Destroyers

GP: 81 | W: 61 | L: 19 | OTL: 1 | P: 123
GF: 504 | GA: 340 | PP%: 50.29% | PK%: 65.91%
GM : Marcel Fournier | Morale : 99 | Team Overall : 71
Next Games #811 vs Falcons
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Tyler Pitlick (R)X100.00876991888779857250697586566973088740
2Vinnie Hinostroza (R)X100.00706095867579537755817377556969091720
3Dmitrij Jaskin (R)X100.00936996848578796950696880517375091720
4Mark LetestuX100.00746597818178847181707177538077092720
5Nick Cousins (R) (A)X100.00886590868178747153677573707073090710
6Tanner KeroX100.00686395857777357158756786506872087700
7Dominik Simon (R)X100.00806689847977357450757275546867088690
8Beau BennettX100.00866795818176356150606274507272092650
9Haydn Fleury (R)X100.00826795888382736550686175506872092720
10Adam McQuaidX100.00918966818981416550666481508078086720
11David SchlemkoX100.00766596858084416650676479517676091710
12Travis Dermott (R) (C)X100.00836895858382407250796470506869091700
13Zach RedmondX100.00836986838380356150606272506970071680
Scratches
1Xavier Ouellet (R)X97.77756897848279486550696173506971072690
TEAM AVERAGE99.7981689284827954695370677753717208771
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Ondrej Pavelec96.0072667590716971707269707975092720
TEAM AVERAGE96.007266759071697170726970797509272
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Peter Horachek71595563706399CAN582665,500$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Vinnie HinostrozaDestroyers (WOL)LW8171128199482210969338913925718.25%44177721.94325789592100111015114365.52%1459956072.242311014127
2Tyler PitlickDestroyers (WOL)RW8183841675374201469037610522822.07%35185022.842340634320901191579163.42%4736971071.81230311688
3Mark LetestuDestroyers (WOL)C8155111166524125981232237014024.66%40163620.21235275422081012493572.17%20703251022.030113161110
4Nick CousinsDestroyers (WOL)C7750681181737151161132607917819.23%30144018.71142943271460003745265.75%8765755011.6400102436
5Dominik SimonDestroyers (WOL)C695061111273915112632425613220.66%17122217.7216143022115000078159.55%2674228011.8200012588
6Dmitrij JaskinDestroyers (WOL)RW81473885040133682918717916.15%43137717.01991815561013556156.25%486146011.2311000482
7Haydn FleuryDestroyers (WOL)D771159703236301088515773767.01%107206826.86102434272210114174100.00%040130000.6800123022
8Adam McQuaidDestroyers (WOL)D7616547025237751708116260669.88%97190625.0914152919204000210911100.00%124133000.73001221022
9Tanner KeroDestroyers (WOL)C64273158-184073772126013012.74%34106616.6647115280000262368.74%4194242001.0900000404
10Travis DermottDestroyers (WOL)D81114455752201016111634529.48%82160819.86109191414601121123166.67%32577000.6800220031
11David SchlemkoDestroyers (WOL)D73934433200787284454210.71%83148120.2957121013001111260050.00%21578000.5800000020
12Beau BennettDestroyers (WOL)RW731520351221012344150398510.00%26118216.195510844000020257.58%332545000.5900011012
13Xavier OuelletDestroyers (WOL)D691282923271557317927311.27%6298314.2514543900002100100.00%1775000.5900012002
14Zach RedmondDestroyers (WOL)D47310134441045264513146.67%3164813.80000013000041000.00%2536000.4000200002
Team Total or Average10304497701219274659245145610272786887161016.12%7312024919.661662724382951776257361111522068.27%43405439230191.2058201613536056
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Ondrej PavelecDestroyers (WOL)4539410.9122.802677631251417744200.80010450502
Team Total or Average4539410.9122.802677631251417744200.80010450502


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam McQuaidDestroyers (WOL)D321987-03-23 03:26:19No212 Lbs6 ft4NoNoNo1UFAPro & Farm1,250,000$0$0$No
Beau BennettDestroyers (WOL)RW271992-03-22 09:26:19No195 Lbs6 ft2YesNoNo1RFAPro & Farm1,300,000$0$0$No
David SchlemkoDestroyers (WOL)D311988-03-22 09:26:19No190 Lbs6 ft1YesNoNo2UFAPro & Farm550,000$0$0$No
Dmitrij JaskinDestroyers (WOL)RW251994-03-22 21:26:19Yes196 Lbs6 ft2NoNoNo1ELCPro & Farm1,000,000$0$0$No
Dominik SimonDestroyers (WOL)C251994-08-08 18:43:01Yes190 Lbs5 ft11NoNoNo1ELCPro & Farm925,000$0$0$No
Haydn FleuryDestroyers (WOL)D231996-07-08 17:13:38Yes208 Lbs6 ft3NoNoNo2ELCPro & Farm1,775,000$0$0$No
Mark LetestuDestroyers (WOL)C331986-03-22 21:26:19No190 Lbs5 ft11NoNoNo1UFAPro & Farm1,800,000$0$0$No
Nick CousinsDestroyers (WOL)C251994-03-22 21:26:19Yes188 Lbs5 ft10NoNoNo2ELCPro & Farm1,000,000$0$0$No
Ondrej PavelecDestroyers (WOL)G311987-08-31 09:26:20No212 Lbs6 ft3YesNoNo1UFAPro & Farm1,300,000$0$0$No
Tanner KeroDestroyers (WOL)C261993-03-22 15:26:19No185 Lbs6 ft0NoNoNo2ELCPro & Farm750,000$0$0$No
Travis DermottDestroyers (WOL)D221996-12-22 17:34:13Yes204 Lbs6 ft0NoNoNo3ELCPro & Farm925,000$0$0$No
Tyler PitlickDestroyers (WOL)RW271992-03-22 09:26:19Yes202 Lbs6 ft0NoNoNo3RFAPro & Farm1,000,000$0$0$No
Vinnie HinostrozaDestroyers (WOL)LW241995-03-23 03:26:19Yes173 Lbs5 ft9NoNoNo1ELCPro & Farm925,000$0$0$No
Xavier OuelletDestroyers (WOL)D251994-03-22 21:26:19Yes200 Lbs6 ft1NoNoNo2ELCPro & Farm1,250,000$0$0$No
Zach RedmondDestroyers (WOL)D301989-03-22 15:26:19No205 Lbs6 ft2YesNoNo1UFAPro & Farm2,400,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1527.07197 Lbs6 ft11.601,210,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Vinnie HinostrozaMark LetestuTyler Pitlick40122
2Dominik SimonNick CousinsDmitrij Jaskin30122
3Tanner KeroBeau Bennett20122
4Tyler PitlickDominik SimonVinnie Hinostroza10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryAdam McQuaid40122
2David SchlemkoTravis Dermott30122
3Zach Redmond20122
4Haydn FleuryAdam McQuaid10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Vinnie HinostrozaMark LetestuTyler Pitlick60122
2Dominik SimonNick CousinsDmitrij Jaskin40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryAdam McQuaid60122
2David SchlemkoTravis Dermott40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Tyler PitlickVinnie Hinostroza60122
2Dmitrij JaskinMark Letestu40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryAdam McQuaid60122
2David SchlemkoTravis Dermott40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Tyler Pitlick60122Haydn FleuryAdam McQuaid60122
2Vinnie Hinostroza40122David SchlemkoTravis Dermott40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Tyler PitlickVinnie Hinostroza60122
2Dmitrij JaskinMark Letestu40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Haydn FleuryAdam McQuaid60122
2David SchlemkoTravis Dermott40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Vinnie HinostrozaMark LetestuTyler PitlickHaydn FleuryAdam McQuaid
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Vinnie HinostrozaMark LetestuTyler PitlickHaydn FleuryAdam McQuaid
Extra Forwards
Normal PowerPlayPenalty Kill
Tanner Kero, Beau Bennett, Nick CousinsTanner Kero, Beau BennettNick Cousins
Extra Defensemen
Normal PowerPlayPenalty Kill
Zach Redmond, David Schlemko, Travis DermottZach RedmondDavid Schlemko, Travis Dermott
Penalty Shots
Tyler Pitlick, Vinnie Hinostroza, Dmitrij Jaskin, Mark Letestu, Nick Cousins
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Chiefs43001000311912220000001358210010001814481.00031508100128207161101411009108395116123272584201260.00%10370.00%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
2Cobra44000000311714220000001510522000000167981.0003149800012820716110154100910839511610045399015746.67%11372.73%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
3Cyclone422000001919021100000912-321100000107340.5001930490012820716110152100910839511610628298118422.22%12558.33%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
4Distraction4120001021174201000101010021100000117440.5002136570012820716110147100910839511618446286715746.67%9277.78%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
5Dynamos5210200028217210010001349311010001517-280.80028437101128207161101611009108395116129363512318950.00%15473.33%11018145070.21%897139764.21%1105158669.67%1972113514765761432883
6Falcons3210000023131011000000936211000001410440.66723426500128207161101471009108395116123324163161168.75%8537.50%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
7Intrepides43100000201462110000098122000000116560.7502035550012820716110179100910839511614551239619842.11%9277.78%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
8L'Euphorie422000001917222000000124820200000713-640.5001929480012820716110154100910839511613245217116850.00%8537.50%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
9Monkeys 422000002323021100000651211000001718-140.5002338610012820716110164100910839511619056425617847.06%11554.55%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
10Monsters641001003321123200010018108321000001511490.750336295001282071611020410091083951161846011710315533.33%261446.15%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
11Patriotes54100000312292200000012102321000001912780.8003155860012820716110156100910839511615445110105281657.14%15473.33%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
12Prospects42200000302282110000018117211000001211140.5003050800012820716110163100910839511613744667718738.89%14657.14%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
13Senators66000000501535440000003512232200000015312121.0005086136011282071611021310091083951161434224126312064.52%7185.71%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
14Sharks4210001020155210000101037211000001012-260.7502033530012820716110132100910839511615845546513538.46%12283.33%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
15Sheriefs44000000227152200000013492200000093681.000223961001282071611013710091083951169432249918738.89%12191.67%21018145070.21%897139764.21%1105158669.67%1972113514765761432883
Total81531905130504340164402860213025213811441251303000252202501230.75950484713510312820716110305010091083951162658808773164234417350.29%2207565.91%41018145070.21%897139764.21%1105158669.67%1972113514765761432883
17Viking421000102222021000010963211000001316-360.7502237590012820716110151100910839511617949206913753.85%10550.00%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
18Warriors431000002919102200000018414211000001115-460.75029487701128207161101551009108395116128402083201575.00%50100.00%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
19Wildcats4300100026179210010001410422000000127581.0002645710012820716110161100910839511611545248514964.29%12466.67%11018145070.21%897139764.21%1105158669.67%1972113514765761432883
20Youngblood421010002620621100000972210010001713460.7502640660012820716110179100910839511613440319920840.00%14471.43%01018145070.21%897139764.21%1105158669.67%1972113514765761432883
_Since Last GM Reset81531905130504340164402860213025213811441251303000252202501230.75950484713510312820716110305010091083951162658808773164234417350.29%2207565.91%41018145070.21%897139764.21%1105158669.67%1972113514765761432883
_Vs Conference41289031002671729520162011001336568211270200013410727630.768267454721031282071611014931009108395116128036644382418310054.64%1094162.39%11018145070.21%897139764.21%1105158669.67%1972113514765761432883
_Vs Division22163021001427963119001100783642117301000644321370.84114224638802128207161107341009108395116610183286457925054.35%632363.49%11018145070.21%897139764.21%1105158669.67%1972113514765761432883

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
81123W3504847135130502658808773164203
All Games
GPWLOTWOTL SOWSOLGFGA
8153195130504340
Home Games
GPWLOTWOTL SOWSOLGFGA
402862130252138
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4125133000252202
Last 10 Games
WLOTWOTL SOWSOL
900010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
34417350.29%2207565.91%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
100910839511612820716110
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1018145070.21%897139764.21%1105158669.67%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1972113514765761432883


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-05-063Senators0Destroyers10WBoxScore
2 - 2019-05-0713Destroyers4Dynamos3WXBoxScore
4 - 2019-05-0922Destroyers8Patriotes2WBoxScore
6 - 2019-05-1132Destroyers1Monsters3LBoxScore
8 - 2019-05-1341Senators5Destroyers7WBoxScore
10 - 2019-05-1552Monsters5Destroyers7WBoxScore
12 - 2019-05-1765Intrepides2Destroyers6WBoxScore
15 - 2019-05-2079Destroyers7Distraction1WBoxScore
16 - 2019-05-2185Prospects1Destroyers11WBoxScore
18 - 2019-05-2399Warriors0Destroyers12WBoxScore
21 - 2019-05-26110Destroyers9Senators2WBoxScore
22 - 2019-05-27120Monkeys 3Destroyers1LBoxScore
24 - 2019-05-29129Destroyers8Wildcats5WBoxScore
26 - 2019-05-31139Monsters4Destroyers3LXBoxScore
28 - 2019-06-02150Destroyers2L'Euphorie5LBoxScore
30 - 2019-06-04152Destroyers6Viking11LBoxScore
33 - 2019-06-07169Monsters1Destroyers8WBoxScore
35 - 2019-06-09180Destroyers8Dynamos5WBoxScore
36 - 2019-06-10189Wildcats4Destroyers7WBoxScore
38 - 2019-06-12198L'Euphorie1Destroyers3WBoxScore
40 - 2019-06-14207Destroyers8Warriors7WBoxScore
42 - 2019-06-16220Patriotes5Destroyers6WBoxScore
45 - 2019-06-19228Destroyers6Senators1WBoxScore
47 - 2019-06-21240Destroyers9Chiefs6WBoxScore
48 - 2019-06-22242Destroyers9Patriotes4WBoxScore
50 - 2019-06-24257Wildcats6Destroyers7WXBoxScore
53 - 2019-06-27269Senators3Destroyers10WBoxScore
55 - 2019-06-29277L'Euphorie3Destroyers9WBoxScore
56 - 2019-06-30283Destroyers4Distraction6LBoxScore
58 - 2019-07-02299Destroyers5L'Euphorie8LBoxScore
60 - 2019-07-04307Destroyers5Cyclone6LBoxScore
62 - 2019-07-06314Cyclone10Destroyers2LBoxScore
64 - 2019-07-08325Prospects10Destroyers7LBoxScore
66 - 2019-07-10340Sheriefs2Destroyers4WBoxScore
68 - 2019-07-12346Destroyers9Chiefs8WXBoxScore
71 - 2019-07-15358Destroyers3Warriors8LBoxScore
72 - 2019-07-16363Destroyers2Patriotes6LBoxScore
74 - 2019-07-18372Chiefs4Destroyers7WBoxScore
76 - 2019-07-20385Destroyers10Youngblood9WXBoxScore
77 - 2019-07-21391Intrepides6Destroyers3LBoxScore
78 - 2019-07-22404Cobra6Destroyers8WBoxScore
80 - 2019-07-24414Distraction7Destroyers6LBoxScore
82 - 2019-07-26424Destroyers8Cobra3WBoxScore
84 - 2019-07-28431Destroyers7Youngblood4WBoxScore
85 - 2019-07-29442Destroyers8Cobra4WBoxScore
87 - 2019-07-31452Destroyers11Monkeys 7WBoxScore
88 - 2019-08-01459Senators4Destroyers8WBoxScore
90 - 2019-08-03472Cobra4Destroyers7WBoxScore
91 - 2019-08-04482Destroyers6Monkeys 11LBoxScore
93 - 2019-08-06489Destroyers3Dynamos9LBoxScore
95 - 2019-08-08500Dynamos4Destroyers5WXBoxScore
97 - 2019-08-10512Monkeys 2Destroyers5WBoxScore
99 - 2019-08-12520Destroyers3Sharks1WBoxScore
100 - 2019-08-13531Sheriefs2Destroyers9WBoxScore
103 - 2019-08-16546Distraction3Destroyers4WXXBoxScore
104 - 2019-08-17554Destroyers3Intrepides2WBoxScore
105 - 2019-08-18563Destroyers7Viking5WBoxScore
108 - 2019-08-21575Dynamos0Destroyers8WBoxScore
109 - 2019-08-22588Destroyers4Wildcats2WBoxScore
111 - 2019-08-24594Viking4Destroyers6WBoxScore
112 - 2019-08-25603Destroyers10Falcons4WBoxScore
114 - 2019-08-27614Sharks1Destroyers7WBoxScore
116 - 2019-08-29626Destroyers8Intrepides4WBoxScore
117 - 2019-08-30633Warriors4Destroyers6WBoxScore
118 - 2019-08-31642Destroyers2Sheriefs1WBoxScore
119 - 2019-09-01651Destroyers5Prospects7LBoxScore
121 - 2019-09-03661Sharks2Destroyers3WXXBoxScore
122 - 2019-09-04673Youngblood4Destroyers3LBoxScore
123 - 2019-09-05680Destroyers4Falcons6LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
125 - 2019-09-07690Destroyers7Sharks11LBoxScore
126 - 2019-09-08700Youngblood3Destroyers6WBoxScore
128 - 2019-09-10713Falcons3Destroyers9WBoxScore
129 - 2019-09-11725Destroyers7Sheriefs2WBoxScore
130 - 2019-09-12731Destroyers9Monsters4WBoxScore
132 - 2019-09-14738Chiefs1Destroyers6WBoxScore
135 - 2019-09-17756Cyclone2Destroyers7WBoxScore
136 - 2019-09-18762Destroyers5Cyclone1WBoxScore
138 - 2019-09-20774Viking2Destroyers3WXXBoxScore
139 - 2019-09-21784Patriotes5Destroyers6WBoxScore
140 - 2019-09-22791Destroyers5Monsters4WBoxScore
141 - 2019-09-23794Destroyers7Prospects4WBoxScore
144 - 2019-09-26811Falcons-Destroyers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,351,833$ 1,815,000$ 1,417,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
12,432$ 1,704,546$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 4 16,990$ 67,960$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018815319051305043401644028602130252138114412513030002522025012350484713510312820716110305010091083951162658808773164234417350.29%2207565.91%41018145070.21%897139764.21%1105158669.67%1972113514765761432883
Total Regular Season815319051305043401644028602130252138114412513030002522025012350484713510312820716110305010091083951162658808773164234417350.29%2207565.91%41018145070.21%897139764.21%1105158669.67%1972113514765761432883
Playoff
201712840000068653642000003936364200000292901668123191001026311433112158162134294124173472961.70%432053.49%28923837.39%7517642.61%10327138.01%251142253115216102
Total Playoff12840000068653642000003936364200000292901668123191001026311433112158162134294124173472961.70%432053.49%28923837.39%7517642.61%10327138.01%251142253115216102