Monkeys

GP: 81 | W: 63 | L: 12 | OTL: 6 | P: 132
GF: 634 | GA: 350 | PP%: 62.76% | PK%: 64.13%
GM : Fred Joanis | Morale : 93 | Team Overall : 71
Next Games #813 vs Sheriefs
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Matt CalvertXX100.00766890858079737350737380557678022730
2Brett Connolly (R)XX97.00786891878378737555707972597576080720
3Marcus FolignoXX98.00928380819576797157717177537577081720
4Artturi Lehkonen (R)XX100.00796493847882727250687678637073079720
5Daniel Carr (R)XX100.00756495848078407650777475566868079700
6Pontus Aberg (R)XX100.00695596887878557150746873516969078690
7Matt Benning (R)X97.00916886828383807150726969527073079730
8Jakob Chychrun (R)X100.00866993838586567050716972526974079720
9Christian Djoos (R)X100.00676096847580676850706669506968079690
10Mirco Mueller (R)X100.00706296858382356550696183506870079690
11Madison Bowey (R)X100.00777090848079546850746165506869079680
Scratches
TEAM AVERAGE99.2778669184828062715172707454717207471
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
TEAM AVERAGE0.000000000000000000
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Lindy Ruff68717177997899CAN5621,125,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brett ConnollyMonkeys (IDS)LW/RW8016313830110344301437666422138624.55%49194024.265853111102210415715518264.15%106164730283.1024312291812
2Marcus FolignoMonkeys (IDS)LW/RW8110616527193137851829855515431219.10%61185322.8837651026518603321278666.61%566116780132.922594417188
3Artturi LehkonenMonkeys (IDS)LW/RW8194841785245251588254414436117.28%47161819.983223555011830351179258.19%177116620112.2046122899
4Daniel CarrMonkeys (IDS)LW/RW7960861463315151025144213027513.57%33141017.85182846311041015814452.46%6112461012.0714111377
5Matt BenningMonkeys (IDS)D8120124144958040159803281431436.10%128227028.03114253382390220161400.00%075148011.2712305156
6Jakob ChychrunMonkeys (IDS)D811281932432101417621483935.61%94162620.08619251812001121281040.00%554115001.1401011022
7Mirco MuellerMonkeys (IDS)D81761683855575517172574.09%82113113.97412167470111451080.00%51278101.2000100015
8Pontus AbergMonkeys (IDS)LW/RW49382967275551312527116815.08%2180016.3356118220003494160.00%457134021.6701010226
9Christian DjoosMonkeys (IDS)D81124254241610725216057777.50%99143517.72710171190011095110.00%02786000.7500020011
10Madison BoweyMonkeys (IDS)D819374645155874412363777.32%55103412.777411814000036100.00%01146000.8900010004
11Matt CalvertMonkeys (IDS)LW/RW813183121121013356142323.21%418723.494485181013152164.94%7786013.3000101140
12Brandon CarloIcedogsD2072027392115432164202810.94%3954827.42257650000046110.00%01230000.9800111011
Team Total or Average8035418851426594427255120866935731172200015.14%7121585819.7519127146234912259918281061541863.63%10427908171571.801023201417616861
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Juuse SarosIcedogs3936110.9262.33231603901223601500.8758390310
Team Total or Average3936110.9262.33231603901223601500.8758390310


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Artturi LehkonenMonkeys (IDS)LW/RW231996-03-22 09:26:19Yes183 Lbs6 ft0NoNoNo2ELCPro & Farm925,000$0$0$No
Brett ConnollyMonkeys (IDS)LW/RW261993-03-22 15:26:19Yes195 Lbs6 ft3NoNoNo2ELCPro & Farm1,500,000$0$0$No
Christian DjoosMonkeys (IDS)D251994-08-06 06:54:54Yes169 Lbs6 ft0NoNoNo2ELCPro & Farm650,000$0$0$No
Daniel CarrMonkeys (IDS)LW/RW271992-03-22 09:26:19Yes193 Lbs6 ft0NoNoNo1RFAPro & Farm725,000$0$0$No
Jakob ChychrunMonkeys (IDS)D201999-03-23 03:26:19Yes210 Lbs6 ft2NoNoNo2ELCPro & Farm1,350,000$0$0$No
Madison BoweyMonkeys (IDS)D241995-04-22 07:12:12Yes198 Lbs6 ft2NoNoNo1ELCPro & Farm933,333$0$0$No
Marcus FolignoMonkeys (IDS)LW/RW271992-03-22 09:26:19No232 Lbs6 ft3NoNoNo1RFAPro & Farm2,156,250$0$0$No
Matt BenningMonkeys (IDS)D251994-05-25 16:19:36Yes203 Lbs6 ft1NoNoNo1ELCPro & Farm1,075,000$0$0$No
Matt CalvertMonkeys (IDS)LW/RW291990-03-22 21:26:19No186 Lbs5 ft11NoNoNo1UFAPro & Farm2,200,000$0$0$No
Mirco MuellerMonkeys (IDS)D231996-03-22 09:26:19Yes210 Lbs6 ft3NoNoNo2ELCPro & Farm1,319,000$0$0$No
Pontus AbergMonkeys (IDS)LW/RW251993-09-23 07:19:24Yes196 Lbs5 ft11NoNoNo2ELCPro & Farm650,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1124.91198 Lbs6 ft11.551,225,780$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Marcus FolignoBrett Connolly40122
2Artturi LehkonenDaniel Carr30122
320122
4Brett ConnollyMarcus FolignoArtturi Lehkonen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Benning40122
2Jakob ChychrunChristian Djoos30122
3Mirco MuellerMadison Bowey20122
4Matt Benning10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Marcus FolignoBrett Connolly60122
2Artturi LehkonenDaniel Carr40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Benning60122
2Jakob ChychrunChristian Djoos40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Marcus FolignoBrett Connolly60122
2Artturi LehkonenDaniel Carr40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Benning60122
2Jakob ChychrunChristian Djoos40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Marcus Foligno60122Matt Benning60122
2Brett Connolly40122Jakob ChychrunChristian Djoos40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Marcus FolignoBrett Connolly60122
2Artturi LehkonenDaniel Carr40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Benning60122
2Jakob ChychrunChristian Djoos40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Marcus FolignoBrett ConnollyMatt Benning
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Marcus FolignoBrett ConnollyMatt Benning
Extra Forwards
Normal PowerPlayPenalty Kill
, Daniel Carr, Artturi Lehkonen, Daniel CarrArtturi Lehkonen
Extra Defensemen
Normal PowerPlayPenalty Kill
Mirco Mueller, Madison Bowey, Jakob ChychrunMirco MuellerMadison Bowey, Jakob Chychrun
Penalty Shots
Marcus Foligno, Brett Connolly, Artturi Lehkonen, Daniel Carr,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Chiefs54001000451827320010002210122200000023815101.00045751200016326020810258143113311242331174326104312374.19%80100.00%0732170342.98%603136044.34%758180142.09%2171147314965641219673
2Cobra44000000337262200000017314220000001641281.00033589100163260208101841431133112423390383383211361.90%11190.91%1732170342.98%603136044.34%758180142.09%2171147314965641219673
3Cyclone5500000046103633000000285232200000018513101.0004679125011632602081023014311331124233177616598181266.67%19573.68%2732170342.98%603136044.34%758180142.09%2171147314965641219673
4Destroyers422000002323021100000181712110000056-140.50023406300163260208101901431133112423316450547111545.45%17852.94%1732170342.98%603136044.34%758180142.09%2171147314965641219673
5Distraction422000002226-421100000912-3211000001314-140.50022355700163260208101771431133112423317052466416956.25%13930.77%0732170342.98%603136044.34%758180142.09%2171147314965641219673
6Dynamos4400000026917220000001257220000001441081.0002639650016326020810199143113311242337825198114750.00%70100.00%1732170342.98%603136044.34%758180142.09%2171147314965641219673
7Falcons5310010041301122000000221012311001001920-170.7004164105011632602081022214311331124233166595097302066.67%15753.33%0732170342.98%603136044.34%758180142.09%2171147314965641219673
8Intrepides550000003817213300000023815220000001596101.0003870108001632602081022014311331124233222874893201155.00%16381.25%1732170342.98%603136044.34%758180142.09%2171147314965641219673
9L'Euphorie5410000047182922000000248163210000023101380.80047761230016326020810271143113311242331734730119282071.43%10460.00%1732170342.98%603136044.34%758180142.09%2171147314965641219673
10Monsters4300000125131221000001104622000000159670.8752544690016326020810207143113311242331425351836583.33%8362.50%0732170342.98%603136044.34%758180142.09%2171147314965641219673
11Patriotes413000002324-1211000001611520200000713-620.250233760001632602081020014311331124233135402975161062.50%12558.33%0732170342.98%603136044.34%758180142.09%2171147314965641219673
12Prospects43000001302732200000014113210000011616070.87530538300163260208101971431133112423313955477512650.00%16943.75%1732170342.98%603136044.34%758180142.09%2171147314965641219673
13Senators430001003615212200000020317210001001612470.875366510100163260208102351431133112423380232181201575.00%8450.00%0732170342.98%603136044.34%758180142.09%2171147314965641219673
14Sharks4210001036261021100000161602100001020101060.75036639910163260208102111431133112423316048437812650.00%13838.46%0732170342.98%603136044.34%758180142.09%2171147314965641219673
15Sheriefs33000000311318110000001165220000002071361.00031498000163260208101561431133112423370214371151066.67%8450.00%1732170342.98%603136044.34%758180142.09%2171147314965641219673
Total81601201323634350284403150101232216615641297003113121841281320.8156341076171013163260208104013143113311242332599882774162533320962.76%2238064.13%9732170342.98%603136044.34%758180142.09%2171147314965641219673
17Viking420001103424102100001020119210001001413170.87534619500163260208102061431133112423315539386617847.06%9366.67%0732170342.98%603136044.34%758180142.09%2171147314965641219673
18Warriors5320000039231621100000141043210000025131260.60039681070116326020810235143113311242331325154109191578.95%12375.00%0732170342.98%603136044.34%758180142.09%2171147314965641219673
19Wildcats4400000030151522000000168822000000147781.0003051810016326020810217143113311242339531229214750.00%11372.73%0732170342.98%603136044.34%758180142.09%2171147314965641219673
20Youngblood43000001291217210000011082220000001941570.87529497800163260208101981431133112423313459558513753.85%10190.00%0732170342.98%603136044.34%758180142.09%2171147314965641219673
_Since Last GM Reset81601201323634350284403150101232216615641297003113121841281320.8156341076171013163260208104013143113311242332599882774162533320962.76%2238064.13%9732170342.98%603136044.34%758180142.09%2171147314965641219673
_Vs Conference40288012013041651392015301001162758720135002001429052610.7633045118150316326020810197614311331124233119140536979916511267.88%1063566.98%4732170342.98%603136044.34%758180142.09%2171147314965641219673
_Vs Division20153011001718190108101000863551107200100854639330.825171286457031632602081094514311331124233592214195408987071.43%541572.22%2732170342.98%603136044.34%758180142.09%2171147314965641219673

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
81132OTL16341076171040132599882774162513
All Games
GPWLOTWOTL SOWSOLGFGA
8160121323634350
Home Games
GPWLOTWOTL SOWSOLGFGA
403151012322166
Visitor Games
GPWLOTWOTL SOWSOLGFGA
412970311312184
Last 10 Games
WLOTWOTL SOWSOL
511102
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
33320962.76%2238064.13%9
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
1431133112423316326020810
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
732170342.98%603136044.34%758180142.09%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2171147314965641219673


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-05-068Chiefs2Monkeys 10WBoxScore
3 - 2019-05-0818Monkeys 11Warriors0WBoxScore
4 - 2019-05-0923Intrepides2Monkeys 9WBoxScore
6 - 2019-05-1140Monkeys 10Sheriefs2WBoxScore
8 - 2019-05-1348Monkeys 2L'Euphorie4LBoxScore
10 - 2019-05-1557Cyclone0Monkeys 7WBoxScore
13 - 2019-05-1868Viking3Monkeys 11WBoxScore
14 - 2019-05-1973Monkeys 5Falcons3WBoxScore
16 - 2019-05-2189Monsters2Monkeys 1LXXBoxScore
18 - 2019-05-23100Cyclone4Monkeys 10WBoxScore
20 - 2019-05-25104Monkeys 9L'Euphorie3WBoxScore
22 - 2019-05-27120Monkeys 3Destroyers1WBoxScore
24 - 2019-05-29124Falcons0Monkeys 9WBoxScore
26 - 2019-05-31134Monkeys 11Sharks2WBoxScore
28 - 2019-06-02143Monkeys 10Cyclone3WBoxScore
30 - 2019-06-04156Senators2Monkeys 10WBoxScore
32 - 2019-06-06166Patriotes3Monkeys 12WBoxScore
35 - 2019-06-09178Monkeys 10Youngblood2WBoxScore
36 - 2019-06-10183Monkeys 12L'Euphorie3WBoxScore
38 - 2019-06-12192Monkeys 9Youngblood2WBoxScore
40 - 2019-06-14202Monsters2Monkeys 9WBoxScore
42 - 2019-06-16212Monkeys 5Cobra1WBoxScore
44 - 2019-06-18224Viking8Monkeys 9WXXBoxScore
46 - 2019-06-20235Monkeys 9Sharks8WXXBoxScore
48 - 2019-06-22243Warriors6Monkeys 3LBoxScore
50 - 2019-06-24252Intrepides2Monkeys 3WBoxScore
52 - 2019-06-26264Monkeys 12Chiefs3WBoxScore
54 - 2019-06-28274Senators1Monkeys 10WBoxScore
56 - 2019-06-30284Monkeys 8Cyclone2WBoxScore
58 - 2019-07-02294Cobra2Monkeys 8WBoxScore
60 - 2019-07-04303Monkeys 9Distraction4WBoxScore
62 - 2019-07-06311Monkeys 5Wildcats1WBoxScore
64 - 2019-07-08321Cyclone1Monkeys 11WBoxScore
66 - 2019-07-10333Sharks5Monkeys 7WBoxScore
68 - 2019-07-12345Warriors4Monkeys 11WBoxScore
70 - 2019-07-14351Monkeys 9Monsters7WBoxScore
73 - 2019-07-17369Monkeys 6Monsters2WBoxScore
74 - 2019-07-18374Cobra1Monkeys 9WBoxScore
75 - 2019-07-19381Monkeys 8Dynamos2WBoxScore
77 - 2019-07-21392Distraction4Monkeys 7WBoxScore
78 - 2019-07-22403L'Euphorie1Monkeys 12WBoxScore
80 - 2019-07-24413Monkeys 11Cobra3WBoxScore
82 - 2019-07-26421Monkeys 6Intrepides4WBoxScore
84 - 2019-07-28432Monkeys 9Intrepides5WBoxScore
85 - 2019-07-29439Prospects4Monkeys 5WBoxScore
87 - 2019-07-31452Destroyers11Monkeys 7LBoxScore
88 - 2019-08-01463Sharks11Monkeys 9LBoxScore
90 - 2019-08-03469Monkeys 6Dynamos2WBoxScore
91 - 2019-08-04482Destroyers6Monkeys 11WBoxScore
93 - 2019-08-06491Monkeys 10Sheriefs5WBoxScore
95 - 2019-08-08501Monkeys 7Senators2WBoxScore
97 - 2019-08-10512Monkeys 2Destroyers5LBoxScore
99 - 2019-08-12519Dynamos3Monkeys 6WBoxScore
101 - 2019-08-14534Youngblood4Monkeys 7WBoxScore
103 - 2019-08-16545Wildcats4Monkeys 6WBoxScore
104 - 2019-08-17556Monkeys 9Senators10LXBoxScore
105 - 2019-08-18565Monkeys 7Falcons9LBoxScore
107 - 2019-08-20570Patriotes8Monkeys 4LBoxScore
108 - 2019-08-21580Monkeys 12Warriors8WBoxScore
110 - 2019-08-23589Monkeys 5Patriotes6LBoxScore
112 - 2019-08-25599Prospects7Monkeys 9WBoxScore
113 - 2019-08-26606Monkeys 9Wildcats6WBoxScore
115 - 2019-08-28618Dynamos2Monkeys 6WBoxScore
116 - 2019-08-29630Monkeys 11Chiefs5WBoxScore
117 - 2019-08-30637Falcons10Monkeys 13WBoxScore
119 - 2019-09-01646Monkeys 2Patriotes7LBoxScore
120 - 2019-09-02657Distraction8Monkeys 2LBoxScore
122 - 2019-09-04668Monkeys 7Falcons8LXBoxScore
123 - 2019-09-05676Monkeys 2Warriors5LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
124 - 2019-09-06683L'Euphorie7Monkeys 12WBoxScore
125 - 2019-09-07696Chiefs3Monkeys 6WBoxScore
127 - 2019-09-09710Youngblood4Monkeys 3LXXBoxScore
130 - 2019-09-12728Wildcats4Monkeys 10WBoxScore
132 - 2019-09-14739Monkeys 11Prospects10WBoxScore
134 - 2019-09-16750Sheriefs6Monkeys 11WBoxScore
135 - 2019-09-17759Intrepides4Monkeys 11WBoxScore
136 - 2019-09-18765Monkeys 7Viking5WBoxScore
138 - 2019-09-20773Monkeys 4Distraction10LBoxScore
139 - 2019-09-21778Monkeys 5Prospects6LXXBoxScore
141 - 2019-09-23793Chiefs5Monkeys 6WXBoxScore
142 - 2019-09-24803Monkeys 7Viking8LXBoxScore
144 - 2019-09-26813Sheriefs-Monkeys -



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,340,268$ 1,348,358$ 828,358$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
9,235$ 1,246,025$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 4 16,941$ 67,764$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201881601201323634350284403150101232216615641297003113121841281326341076171013163260208104013143113311242332599882774162533320962.76%2238064.13%9732170342.98%603136044.34%758180142.09%2171147314965641219673
Total Regular Season81601201323634350284403150101232216615641297003113121841281326341076171013163260208104013143113311242332599882774162533320962.76%2238064.13%9732170342.98%603136044.34%758180142.09%2171147314965641219673
Playoff
2017181620000011541749720000054272799000000611447321151893041238512426492342231893592191295307824048.78%501472.00%226234077.06%33141479.95%26233478.44%426236333130324206
Total Playoff181620000011541749720000054272799000000611447321151893041238512426492342231893592191295307824048.78%501472.00%226234077.06%33141479.95%26233478.44%426236333130324206