Monkeys

GP: 44 | W: 41 | L: 2 | OTL: 1 | P: 83
GF: 367 | GA: 122 | PP%: 67.84% | PK%: 75.21%
GM : Fred Joanis | Morale : 88 | Team Overall : 71
Next Games #439 vs Prospects
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Brett Connolly (R)XX99.00786891878378737555707972597576080720
2Marcus FolignoXX99.00928380819576797157717177537577083720
3Artturi Lehkonen (R)XX100.00796493847882727250687678637073081720
4Daniel Carr (R)XX100.00756495848078407650777475566868080700
5Pontus Aberg (R)XX100.00695596887878557150746873516969080690
6Matt Benning (R)X99.00916886828383807150726969527073086730
7Jakob Chychrun (R)X100.00866993838586567050716972526974080720
8Christian Djoos (R)X100.00676096847580676850706669506968080690
9Mirco Mueller (R)X100.00706296858382356550696183506870084690
10Madison Bowey (R)X100.00777090848079546850746165506869081680
Scratches
TEAM AVERAGE99.7078669284828061715172697354707208271
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
TEAM AVERAGE0.000000000000000000
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Lindy Ruff68717177997899CAN5621,125,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brett ConnollyMonkeys (IDS)LW/RW438680166881210865136213119023.76%29105324.493330635610611249612165.52%5887430143.1512200131310
2Marcus FolignoMonkeys (IDS)LW/RW446882150786640112533158317021.59%2999422.6021355632890111735369.64%2806843093.02233231286
3Artturi LehkonenMonkeys (IDS)LW/RW44575210951382084432867319219.93%2588320.0718123029603033716061.76%1026937082.4724112746
4Matt BenningMonkeys (IDS)D4497382756230934116169765.59%75120827.474252918119022098300.00%04372001.3601303042
5Daniel CarrMonkeys (IDS)LW/RW42334679325565302146314015.42%1274517.769132212430003401351.61%316529002.1212010253
6Pontus AbergMonkeys (IDS)LW/RW44322658245546292176514314.75%1771916.3646104190003444165.00%406130011.6101010214
7Jakob ChychrunMonkeys (IDS)D4454954382010654111042424.55%5290220.513161911630112800066.67%32667001.2001011011
8Mirco MuellerMonkeys (IDS)D4434346465536307839293.85%5069515.801892350111430080.00%5542101.3200100004
9Madison BoweyMonkeys (IDS)D44627335210052266534419.23%2860413.736410713000019100.00%0632001.0900000002
10Matt CalvertIcedogsLW/RW813183121121013356142323.21%418723.494485181013152164.94%7786013.3000101140
11Christian DjoosMonkeys (IDS)D4452328349535277625326.58%5276017.284610438000055110.00%01345000.7400010000
12Brandon CarloIcedogsD2072027392115432164202810.94%3954827.42257650000046110.00%01230000.9800111011
Team Total or Average4653245398635782651557303952004658110616.17%412930220.01109164273186657561120687361166.11%5964634761331.8661412811374139
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Juuse SarosIcedogs3936110.9262.33231603901223601500.8758390310
Team Total or Average3936110.9262.33231603901223601500.8758390310


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Artturi LehkonenMonkeys (IDS)LW/RW231996-03-22 09:26:19Yes183 Lbs6 ft0NoNoNo2ELCPro & Farm925,000$0$0$No
Brett ConnollyMonkeys (IDS)LW/RW261993-03-22 15:26:19Yes195 Lbs6 ft3NoNoNo2ELCPro & Farm1,500,000$0$0$No
Christian DjoosMonkeys (IDS)D241994-08-06 06:54:54Yes169 Lbs6 ft0NoNoNo2ELCPro & Farm650,000$0$0$No
Daniel CarrMonkeys (IDS)LW/RW271992-03-22 09:26:19Yes193 Lbs6 ft0NoNoNo1RFAPro & Farm725,000$0$0$No
Jakob ChychrunMonkeys (IDS)D201999-03-23 03:26:19Yes210 Lbs6 ft2NoNoNo2ELCPro & Farm1,350,000$0$0$No
Madison BoweyMonkeys (IDS)D241995-04-22 07:12:12Yes198 Lbs6 ft2NoNoNo1ELCPro & Farm933,333$0$0$No
Marcus FolignoMonkeys (IDS)LW/RW271992-03-22 09:26:19No232 Lbs6 ft3NoNoNo1RFAPro & Farm2,156,250$0$0$No
Matt BenningMonkeys (IDS)D251994-05-25 16:19:36Yes203 Lbs6 ft1NoNoNo1ELCPro & Farm1,075,000$0$0$No
Mirco MuellerMonkeys (IDS)D231996-03-22 09:26:19Yes210 Lbs6 ft3NoNoNo2ELCPro & Farm1,319,000$0$0$No
Pontus AbergMonkeys (IDS)LW/RW251993-09-23 07:19:24Yes196 Lbs5 ft11NoNoNo2ELCPro & Farm650,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1024.40199 Lbs6 ft11.601,128,358$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Marcus FolignoBrett Connolly40122
2Artturi LehkonenDaniel Carr30122
3Pontus Aberg20122
4Brett ConnollyMarcus FolignoArtturi Lehkonen10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Benning40122
2Jakob ChychrunChristian Djoos30122
3Mirco MuellerMadison Bowey20122
4Matt Benning10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Marcus FolignoBrett Connolly60122
2Artturi LehkonenDaniel Carr40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Benning60122
2Jakob ChychrunChristian Djoos40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Marcus FolignoBrett Connolly60122
2Artturi LehkonenDaniel Carr40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Benning60122
2Jakob ChychrunChristian Djoos40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Marcus Foligno60122Matt Benning60122
2Brett Connolly40122Jakob ChychrunChristian Djoos40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Marcus FolignoBrett Connolly60122
2Artturi LehkonenDaniel Carr40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt Benning60122
2Jakob ChychrunChristian Djoos40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Marcus FolignoBrett ConnollyMatt Benning
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Marcus FolignoBrett ConnollyMatt Benning
Extra Forwards
Normal PowerPlayPenalty Kill
Pontus Aberg, Daniel Carr, Artturi LehkonenPontus Aberg, Daniel CarrArtturi Lehkonen
Extra Defensemen
Normal PowerPlayPenalty Kill
Mirco Mueller, Madison Bowey, Jakob ChychrunMirco MuellerMadison Bowey, Jakob Chychrun
Penalty Shots
Marcus Foligno, Brett Connolly, Artturi Lehkonen, Daniel Carr, Pontus Aberg
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Chiefs220000002251711000000102811000000123941.00022386000871571216957847126541850211351121083.33%40100.00%039786845.74%40591044.51%41293344.16%1185798805303663373
2Cobra44000000337262200000017314220000001641281.000335891008715712161847847126541890383383211361.90%11190.91%139786845.74%40591044.51%41293344.16%1185798805303663373
3Cyclone5500000046103633000000285232200000018513101.00046791250187157121623078471265418177616598181266.67%19573.68%239786845.74%40591044.51%41293344.16%1185798805303663373
4Destroyers11000000312000000000001100000031221.000358008715712163878471265418449617100.00%30100.00%039786845.74%40591044.51%41293344.16%1185798805303663373
5Distraction220000001688110000007431100000094541.000162642008715712168678471265418802412268562.50%6266.67%039786845.74%40591044.51%41293344.16%1185798805303663373
6Dynamos11000000826000000000001100000082621.0008132100871571216477847126541827643044100.00%20100.00%139786845.74%40591044.51%41293344.16%1185798805303663373
7Falcons2200000014311110000009091100000053241.00014213501871571216897847126541832116518675.00%30100.00%039786845.74%40591044.51%41293344.16%1185798805303663373
8Intrepides4400000027131422000000124822000000159681.000275077008715712161737847126541819476377015853.33%13376.92%039786845.74%40591044.51%41293344.16%1185798805303663373
9L'Euphorie4310000035112411000000121113210000023101360.75035579200871571216216784712654181363723100181266.67%9366.67%139786845.74%40591044.51%41293344.16%1185798805303663373
10Monsters4300000125131221000001104622000000159670.87525446900871571216207784712654181425351836583.33%8362.50%039786845.74%40591044.51%41293344.16%1185798805303663373
11Patriotes1100000012391100000012390000000000021.0001218300087157121656784712654181954197685.71%2150.00%039786845.74%40591044.51%41293344.16%1185798805303663373
12Senators220000002031722000000203170000000000041.00020375700871571216124784712654184215154310770.00%5180.00%039786845.74%40591044.51%41293344.16%1185798805303663373
13Sharks32000010271512110000007522100001020101061.000274774008715712161567847126541810934396011654.55%11736.36%039786845.74%40591044.51%41293344.16%1185798805303663373
14Sheriefs1100000010280000000000011000000102821.000101626008715712165278471265418229113233100.00%3166.67%039786845.74%40591044.51%41293344.16%1185798805303663373
Total4439200021367122245211810001117855123232110001018967122830.943367633100003871571216215378471265418141948744891517111667.84%1213075.21%539786845.74%40591044.51%41293344.16%1185798805303663373
16Viking210000102011921000010201190000000000041.0002036560087157121610278471265418872228298450.00%4175.00%039786845.74%40591044.51%41293344.16%1185798805303663373
17Warriors321000002510152110000014104110000001101140.66725467101871571216143784712654187131466011981.82%8275.00%039786845.74%40591044.51%41293344.16%1185798805303663373
18Wildcats11000000514000000000001100000051421.00058130087157121650784712654183081019100.00%50100.00%039786845.74%40591044.51%41293344.16%1185798805303663373
19Youngblood220000001941500000000000220000001941541.0001934530087157121610578471265418672745449666.67%50100.00%039786845.74%40591044.51%41293344.16%1185798805303663373
_Since Last GM Reset4439200021367122245211810001117855123232110001018967122830.943367633100003871571216215378471265418141948744891517111667.84%1213075.21%539786845.74%40591044.51%41293344.16%1185798805303663373
_Vs Conference2119100001175501251210100001103277699000000722349390.92917530147603871571216102978471265418604212210452775976.62%541277.78%339786845.74%40591044.51%41293344.16%1185798805303663373
_Vs Division121110000010728797610000061174455000000461135220.9171071842910387157121655778471265418330124130260493775.51%34779.41%239786845.74%40591044.51%41293344.16%1185798805303663373

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4483W1936763310002153141948744891503
All Games
GPWLOTWOTL SOWSOLGFGA
443920021367122
Home Games
GPWLOTWOTL SOWSOLGFGA
21181001117855
Visitor Games
GPWLOTWOTL SOWSOLGFGA
23211001018967
Last 10 Games
WLOTWOTL SOWSOL
1000000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
17111667.84%1213075.21%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
78471265418871571216
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
39786845.74%40591044.51%41293344.16%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1185798805303663373


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-05-068Chiefs2Monkeys 10WBoxScore
3 - 2019-05-0818Monkeys 11Warriors0WBoxScore
4 - 2019-05-0923Intrepides2Monkeys 9WBoxScore
6 - 2019-05-1140Monkeys 10Sheriefs2WBoxScore
8 - 2019-05-1348Monkeys 2L'Euphorie4LBoxScore
10 - 2019-05-1557Cyclone0Monkeys 7WBoxScore
13 - 2019-05-1868Viking3Monkeys 11WBoxScore
14 - 2019-05-1973Monkeys 5Falcons3WBoxScore
16 - 2019-05-2189Monsters2Monkeys 1LXXBoxScore
18 - 2019-05-23100Cyclone4Monkeys 10WBoxScore
20 - 2019-05-25104Monkeys 9L'Euphorie3WBoxScore
22 - 2019-05-27120Monkeys 3Destroyers1WBoxScore
24 - 2019-05-29124Falcons0Monkeys 9WBoxScore
26 - 2019-05-31134Monkeys 11Sharks2WBoxScore
28 - 2019-06-02143Monkeys 10Cyclone3WBoxScore
30 - 2019-06-04156Senators2Monkeys 10WBoxScore
32 - 2019-06-06166Patriotes3Monkeys 12WBoxScore
35 - 2019-06-09178Monkeys 10Youngblood2WBoxScore
36 - 2019-06-10183Monkeys 12L'Euphorie3WBoxScore
38 - 2019-06-12192Monkeys 9Youngblood2WBoxScore
40 - 2019-06-14202Monsters2Monkeys 9WBoxScore
42 - 2019-06-16212Monkeys 5Cobra1WBoxScore
44 - 2019-06-18224Viking8Monkeys 9WXXBoxScore
46 - 2019-06-20235Monkeys 9Sharks8WXXBoxScore
48 - 2019-06-22243Warriors6Monkeys 3LBoxScore
50 - 2019-06-24252Intrepides2Monkeys 3WBoxScore
52 - 2019-06-26264Monkeys 12Chiefs3WBoxScore
54 - 2019-06-28274Senators1Monkeys 10WBoxScore
56 - 2019-06-30284Monkeys 8Cyclone2WBoxScore
58 - 2019-07-02294Cobra2Monkeys 8WBoxScore
60 - 2019-07-04303Monkeys 9Distraction4WBoxScore
62 - 2019-07-06311Monkeys 5Wildcats1WBoxScore
64 - 2019-07-08321Cyclone1Monkeys 11WBoxScore
66 - 2019-07-10333Sharks5Monkeys 7WBoxScore
68 - 2019-07-12345Warriors4Monkeys 11WBoxScore
70 - 2019-07-14351Monkeys 9Monsters7WBoxScore
73 - 2019-07-17369Monkeys 6Monsters2WBoxScore
74 - 2019-07-18374Cobra1Monkeys 9WBoxScore
75 - 2019-07-19381Monkeys 8Dynamos2WBoxScore
77 - 2019-07-21392Distraction4Monkeys 7WBoxScore
78 - 2019-07-22403L'Euphorie1Monkeys 12WBoxScore
80 - 2019-07-24413Monkeys 11Cobra3WBoxScore
82 - 2019-07-26421Monkeys 6Intrepides4WBoxScore
84 - 2019-07-28432Monkeys 9Intrepides5WBoxScore
85 - 2019-07-29439Prospects-Monkeys -
87 - 2019-07-31452Destroyers-Monkeys -
88 - 2019-08-01463Sharks-Monkeys -
90 - 2019-08-03469Monkeys -Dynamos-
91 - 2019-08-04482Destroyers-Monkeys -
93 - 2019-08-06491Monkeys -Sheriefs-
95 - 2019-08-08501Monkeys -Senators-
97 - 2019-08-10512Monkeys -Destroyers-
99 - 2019-08-12519Dynamos-Monkeys -
101 - 2019-08-14534Youngblood-Monkeys -
103 - 2019-08-16545Wildcats-Monkeys -
104 - 2019-08-17556Monkeys -Senators-
105 - 2019-08-18565Monkeys -Falcons-
107 - 2019-08-20570Patriotes-Monkeys -
108 - 2019-08-21580Monkeys -Warriors-
110 - 2019-08-23589Monkeys -Patriotes-
112 - 2019-08-25599Prospects-Monkeys -
113 - 2019-08-26606Monkeys -Wildcats-
115 - 2019-08-28618Dynamos-Monkeys -
116 - 2019-08-29630Monkeys -Chiefs-
117 - 2019-08-30637Falcons-Monkeys -
119 - 2019-09-01646Monkeys -Patriotes-
120 - 2019-09-02657Distraction-Monkeys -
122 - 2019-09-04668Monkeys -Falcons-
123 - 2019-09-05676Monkeys -Warriors-
124 - 2019-09-06683L'Euphorie-Monkeys -
125 - 2019-09-07696Chiefs-Monkeys -
127 - 2019-09-09710Youngblood-Monkeys -
130 - 2019-09-12728Wildcats-Monkeys -
Trade Deadline --- Trades can’t be done after this day is simulated!
132 - 2019-09-14739Monkeys -Prospects-
134 - 2019-09-16750Sheriefs-Monkeys -
135 - 2019-09-17759Intrepides-Monkeys -
136 - 2019-09-18765Monkeys -Viking-
138 - 2019-09-20773Monkeys -Distraction-
139 - 2019-09-21778Monkeys -Prospects-
141 - 2019-09-23793Chiefs-Monkeys -
142 - 2019-09-24803Monkeys -Viking-
144 - 2019-09-26813Sheriefs-Monkeys -



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
20 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,394,747$ 1,128,358$ 828,358$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
7,728$ 747,447$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 62 15,434$ 956,908$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018443920002136712224521181000111785512323211000101896712283367633100003871571216215378471265418141948744891517111667.84%1213075.21%539786845.74%40591044.51%41293344.16%1185798805303663373
Total Regular Season443920002136712224521181000111785512323211000101896712283367633100003871571216215378471265418141948744891517111667.84%1213075.21%539786845.74%40591044.51%41293344.16%1185798805303663373
Playoff
2017181620000011541749720000054272799000000611447321151893041238512426492342231893592191295307824048.78%501472.00%226234077.06%33141479.95%26233478.44%426236333130324206
Total Playoff181620000011541749720000054272799000000611447321151893041238512426492342231893592191295307824048.78%501472.00%226234077.06%33141479.95%26233478.44%426236333130324206