Monkeys

GP: 54 | W: 34 | L: 16 | OTL: 4 | P: 72
GF: 357 | GA: 316 | PP%: 52.17% | PK%: 56.67%
GM : Fred Joanis | Morale : 59 | Team Overall : 70
Next Games #590 vs L'Euphorie
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Filip Zadina (R)X100.006855988777813580507683696266660287102131,775,000$
2Trevor Moore (R)X98.00856296898078497150677478566867075700262775,000$
3Maxime Comtois (R)X98.00916982848879357450727568726668077690222925,000$
4Michael Dal Colle (R)X100.00876495828577616850676871516869076680242700,000$
5Pontus Aberg (R)XX100.00545490887574356650716070507070063640271700,000$
6Kris RussellX100.008360948577826766506960845087880627403322,500,000$
7Henri Jokiharju (R)X100.007963908980838569506967705069710687202121,279,167$
8Matt BenningX100.008967928283795168506964735072730297102611,900,000$
9Mario Ferraro (R)X100.009156898981817468506965695068690617102231,137,500$
10Mirco Mueller (R)X100.008261908583836267506765785070700287102611,400,000$
11Cale Fleury (R)X100.00936796848680496350606468506766032690222883,333$
12Christian Djoos (R)X100.005359958475853571507069745270690466602611,250,000$
Scratches
1Madison Bowey (R)X93.667869868481836673507767675070700477002511,000,000$
TEAM AVERAGE99.1579629286818054705069687253707005370
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
TEAM AVERAGE0.000000000000000000
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Rick Bowness81957392796499CAN663750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Trevor MooreMonkeys (IDS)C54599014936323061852828918920.92%52110320.441828462811821381155256.76%16215841192.70232228135
2Maxime ComtoisMonkeys (IDS)LW54567913537461090332717018220.66%16106319.69182745291192134736352.17%1158128172.5412101975
3Michael Dal ColleMonkeys (IDS)LW536251113720664833310119818.62%2697718.4514163025941122546070.00%506042062.3111000769
4Filip ZadinaMonkeys (IDS)RW252528532751932113396022.12%1843817.54881614440000533057.87%178318022.4212001422
5Mario FerraroMonkeys (IDS)D5384048840563917155694.68%7491717.32415543000042020.00%02259001.0500000113
6Pontus AbergMonkeys (IDS)LW/RW291034441280211810935849.17%1854118.69210125610001271061.11%542812011.6200000120
7Henri JokiharjuMonkeys (IDS)D296313786036378140477.41%5171924.804812782000056000.00%02935001.0300000101
8Cale FleuryMonkeys (IDS)D2515223703210342696385515.63%1447919.17410149430001112058.25%2063018011.5400110150
9Christian DjoosMonkeys (IDS)D19623296609107029328.57%1333117.46257334000001085.71%7138001.7500000011
10Kris RussellMonkeys (IDS)D1921315122037195321203.77%2647124.79022158011136020.00%01240000.6400000102
11Mirco MuellerMonkeys (IDS)D2151015-56028196224368.06%2337117.68336533011024000.00%01022000.8100000000
12Matt BenningMonkeys (IDS)D20110112001793522182.86%1321210.6202204000000050.00%6614001.0400000101
13Madison BoweyMonkeys (IDS)D21279-66015124319174.65%1826012.400000100006000.00%1620000.6900000000
Team Total or Average422257438695119157554893871719582100714.95%362788818.697712019713173955101750324957.19%22383863472261.7658434343729
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Oscar DanskIcedogs117120.9063.326140034361202000.0000110101
Team Total or Average117120.9063.326140034361202000.0000110101


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Cale FleuryMonkeys (IDS)D221998-11-19 15:04:50Yes205 Lbs6 ft1NoNoNo2Pro & Farm883,333$290,237$0$0$No883,333$
Christian DjoosMonkeys (IDS)D261994-08-06 06:54:54Yes169 Lbs6 ft0NoNoNo1Pro & Farm1,250,000$410,714$0$0$NoLink
Filip ZadinaMonkeys (IDS)RW211999-11-27 15:09:35Yes189 Lbs6 ft0NoNoNo3Pro & Farm1,775,000$583,214$0$0$No1,775,000$1,775,000$
Henri JokiharjuMonkeys (IDS)D211999-06-17 14:47:01Yes195 Lbs6 ft0NoNoNo2Pro & Farm1,279,167$420,297$0$0$No1,279,167$
Kris RussellMonkeys (IDS)D331987-05-02 09:26:19No170 Lbs5 ft10NoNoNo2Pro & Farm2,500,000$821,428$0$0$No2,500,000$Link
Madison Bowey (Out of Payroll)Monkeys (IDS)D251995-04-22 07:12:12Yes198 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$328,571$0$0$NoLink
Mario FerraroMonkeys (IDS)D221998-09-17 15:16:04Yes185 Lbs5 ft11NoNoNo3Pro & Farm1,137,500$373,750$0$0$No1,137,500$1,137,500$
Matt BenningMonkeys (IDS)D261994-05-25 16:19:36No203 Lbs6 ft1NoNoNo1Pro & Farm1,900,000$624,285$0$0$NoLink
Maxime ComtoisMonkeys (IDS)LW221999-01-08 04:18:10Yes215 Lbs6 ft2NoNoNo2Pro & Farm925,000$303,928$0$0$No925,000$
Michael Dal ColleMonkeys (IDS)LW241996-06-20 16:09:19Yes204 Lbs6 ft3NoNoNo2Pro & Farm700,000$230,000$0$0$No700,000$
Mirco MuellerMonkeys (IDS)D261995-03-21 09:26:19Yes210 Lbs6 ft3NoNoNo1Pro & Farm1,400,000$460,000$0$0$NoLink
Pontus AbergMonkeys (IDS)LW/RW271993-09-23 07:19:24Yes196 Lbs5 ft11NoNoNo1Pro & Farm700,000$230,000$0$0$NoLink
Trevor MooreMonkeys (IDS)C261995-03-31 15:23:49Yes185 Lbs5 ft10NoNoNo2Pro & Farm775,000$254,642$0$0$No775,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1324.69194 Lbs6 ft01.771,248,077$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Maxime ComtoisTrevor Moore40122
2Michael Dal CollePontus Aberg30122
320122
4Trevor MooreMaxime Comtois10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Henri Jokiharju40122
2Mario Ferraro30122
3Matt Benning20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Maxime ComtoisTrevor Moore60122
2Michael Dal CollePontus Aberg40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Henri Jokiharju60122
2Mario Ferraro40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Trevor Moore60122
2Maxime ComtoisMichael Dal Colle40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Henri Jokiharju60122
2Mario Ferraro40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Henri Jokiharju60122
2Trevor Moore40122Mario Ferraro40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Trevor Moore60122
2Maxime ComtoisMichael Dal Colle40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Henri Jokiharju60122
2Mario Ferraro40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Maxime ComtoisTrevor MooreHenri Jokiharju
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Maxime ComtoisTrevor MooreHenri Jokiharju
Extra Forwards
Normal PowerPlayPenalty Kill
Pontus Aberg, Michael Dal Colle, Maxime ComtoisPontus Aberg, Michael Dal ColleMaxime Comtois
Extra Defensemen
Normal PowerPlayPenalty Kill
Matt Benning, , Matt Benning,
Penalty Shots
, Trevor Moore, Maxime Comtois, Michael Dal Colle, Pontus Aberg
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bolt211000001215-3110000008621010000049-520.50012223400781551188817247876681788236317457.14%4325.00%051599052.02%44884952.77%622124250.08%12557981140430865443
2Destroyers20100010512-7100000104311010000019-820.500581300781551188547247876681779215223100.00%11463.64%051599052.02%44884952.77%622124250.08%12557981140430865443
3Distraction52200010353321010000069-3421000102924560.6003559940078155118818472478766817194934871151173.33%19763.16%251599052.02%44884952.77%622124250.08%12557981140430865443
4Dynamos2200000017107110000009631100000084441.000172744007815511888172478766817572710287342.86%5260.00%051599052.02%44884952.77%622124250.08%12557981140430865443
5Extreme11000000972110000009720000000000021.000915240078155118840724787668173674142150.00%220.00%051599052.02%44884952.77%622124250.08%12557981140430865443
6Falcons1010000056-1000000000001010000056-100.000591400781551188407247876681726116184125.00%3166.67%051599052.02%44884952.77%622124250.08%12557981140430865443
7Guerriers du Nord33000000229132200000015871100000071661.000223860007815511881187247876681774231375201050.00%40100.00%051599052.02%44884952.77%622124250.08%12557981140430865443
8Intrepides311010001815321001000151141010000034-140.6671831490078155118813972478766817642425468450.00%10280.00%151599052.02%44884952.77%622124250.08%12557981140430865443
9L'Euphorie310011001512300000000000310011001512350.8331526410078155118811972478766817913612479555.56%6350.00%051599052.02%44884952.77%622124250.08%12557981140430865443
10Les Restants42100010332582100001017152211000001610660.750335588007815511881707247876681714550287220945.00%14842.86%151599052.02%44884952.77%622124250.08%12557981140430865443
11Monster522001004240242200000343131000010089-150.50042761180078155118820972478766817210823953201575.00%12466.67%051599052.02%44884952.77%622124250.08%12557981140430865443
12Monsters5400010030219220000001376320001001714390.90030528200781551188189724787668172105326749222.22%13376.92%151599052.02%44884952.77%622124250.08%12557981140430865443
13Patriotes211000001011-1110000007611010000035-220.50010182800781551188667247876681766178263133.33%40100.00%051599052.02%44884952.77%622124250.08%12557981140430865443
14Prospects311010002116511000000725201010001414040.66721365700781551188131724787668177829164913753.85%8362.50%051599052.02%44884952.77%622124250.08%12557981140430865443
15Senators211000001818021100000181800000000000020.500183351007815511888772478766817873121279666.67%8537.50%051599052.02%44884952.77%622124250.08%12557981140430865443
16Sharks2110000014122110000008441010000068-220.50014243800781551188817247876681786210309444.44%000.00%051599052.02%44884952.77%622124250.08%12557981140430865443
17Shokers1010000029-7000000000001010000029-700.00023500781551188397247876681751241527100.00%5420.00%051599052.02%44884952.77%622124250.08%12557981140430865443
Total5428160343035731641261750112018915336281111023101681635720.6673576149710078155118821877247876681719276703738511849652.17%1506556.67%651599052.02%44884952.77%622124250.08%12557981140430865443
18Vikings3200010014113210001007611100000075250.8331424380078155118814172478766817862714559444.44%7528.57%151599052.02%44884952.77%622124250.08%12557981140430865443
19Warriors211000001517-200000000000211000001517-220.500152641007815511889472478766817843418416233.33%9544.44%051599052.02%44884952.77%622124250.08%12557981140430865443
20Wildcats3210000020173211000001214-21100000083540.667203252007815511881247247876681711537124412758.33%6433.33%051599052.02%44884952.77%622124250.08%12557981140430865443
_Since Last GM Reset5428160343035731641261750112018915336281111023101681635720.6673576149710078155118821877247876681719276703738511849652.17%1506556.67%651599052.02%44884952.77%622124250.08%12557981140430865443
_Vs Conference26166002201691402913910012090692113750010079718380.73116929045900781551188104072478766817914294196439883843.18%783357.69%351599052.02%44884952.77%622124250.08%12557981140430865443
_Vs Division16830011010984257400011046341294300000635013190.594109184293007815511886757247876681758219196270512039.22%482352.08%351599052.02%44884952.77%622124250.08%12557981140430865443

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5472L13576149712187192767037385100
All Games
GPWLOTWOTL SOWSOLGFGA
5428163430357316
Home Games
GPWLOTWOTL SOWSOLGFGA
261751120189153
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2811112310168163
Last 10 Games
WLOTWOTL SOWSOL
630010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1849652.17%1506556.67%6
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
72478766817781551188
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
51599052.02%44884952.77%622124250.08%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12557981140430865443


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2021-02-146Monkeys 7Distraction8LBoxScore
2 - 2021-02-1515Monster7Monkeys 12WBoxScore
4 - 2021-02-1726Monkeys 4L'Euphorie3WXBoxScore
6 - 2021-02-1937Monster10Monkeys 8LBoxScore
8 - 2021-02-2150Wildcats3Monkeys 7WBoxScore
10 - 2021-02-2357Monkeys 5Distraction4WXXBoxScore
12 - 2021-02-2573Sharks4Monkeys 8WBoxScore
14 - 2021-02-2779Monkeys 6Warriors9LBoxScore
16 - 2021-03-0194Monster8Monkeys 6LBoxScore
18 - 2021-03-03107Senators9Monkeys 5LBoxScore
20 - 2021-03-05118Monkeys 9L'Euphorie6WBoxScore
22 - 2021-03-07129Monkeys 3Intrepides4LBoxScore
24 - 2021-03-09135Monkeys 1Destroyers9LBoxScore
26 - 2021-03-11149Intrepides6Monkeys 7WXBoxScore
28 - 2021-03-13159Monkeys 7Prospects6WXBoxScore
30 - 2021-03-15168Monkeys 10Distraction6WBoxScore
32 - 2021-03-17178Destroyers3Monkeys 4WXXBoxScore
34 - 2021-03-19189Patriotes6Monkeys 7WBoxScore
35 - 2021-03-20203Monkeys 7Prospects8LBoxScore
37 - 2021-03-22211Monkeys 7Distraction6WBoxScore
39 - 2021-03-24220Les Restants6Monkeys 7WBoxScore
40 - 2021-03-25232Monkeys 12Les Restants5WBoxScore
42 - 2021-03-27242Extreme7Monkeys 9WBoxScore
44 - 2021-03-29257Monster6Monkeys 8WBoxScore
46 - 2021-03-31267Prospects2Monkeys 7WBoxScore
48 - 2021-04-02277Monkeys 9Warriors8WBoxScore
50 - 2021-04-04285Monkeys 2Shokers9LBoxScore
51 - 2021-04-05298Monkeys 2L'Euphorie3LXBoxScore
52 - 2021-04-06305Vikings1Monkeys 3WBoxScore
54 - 2021-04-08318Monkeys 7Guerriers du Nord1WBoxScore
56 - 2021-04-10329Monkeys 8Wildcats3WBoxScore
58 - 2021-04-12339Monsters2Monkeys 6WBoxScore
60 - 2021-04-14354Intrepides5Monkeys 8WBoxScore
62 - 2021-04-16361Monkeys 6Monsters4WBoxScore
63 - 2021-04-17374Guerriers du Nord2Monkeys 4WBoxScore
65 - 2021-04-19388Vikings5Monkeys 4LXBoxScore
67 - 2021-04-21397Monkeys 4Monsters5LXBoxScore
68 - 2021-04-22403Monkeys 8Dynamos4WBoxScore
70 - 2021-04-24418Distraction9Monkeys 6LBoxScore
71 - 2021-04-25430Monkeys 8Monster9LXBoxScore
73 - 2021-04-27440Wildcats11Monkeys 5LBoxScore
75 - 2021-04-29448Monkeys 6Sharks8LBoxScore
76 - 2021-04-30460Guerriers du Nord6Monkeys 11WBoxScore
78 - 2021-05-02467Monkeys 4Les Restants5LBoxScore
79 - 2021-05-03481Bolt6Monkeys 8WBoxScore
81 - 2021-05-05493Monkeys 3Patriotes5LBoxScore
82 - 2021-05-06505Dynamos6Monkeys 9WBoxScore
84 - 2021-05-08515Monkeys 5Falcons6LBoxScore
86 - 2021-05-10526Monsters5Monkeys 7WBoxScore
88 - 2021-05-12540Senators9Monkeys 13WBoxScore
90 - 2021-05-14552Monkeys 7Vikings5WBoxScore
91 - 2021-05-15562Les Restants9Monkeys 10WXXBoxScore
93 - 2021-05-17571Monkeys 7Monsters5WBoxScore
94 - 2021-05-18579Monkeys 4Bolt9LBoxScore
95 - 2021-05-19590L'Euphorie-Monkeys -
97 - 2021-05-21605Shokers-Monkeys -
99 - 2021-05-23617Monkeys -Youngblood-
100 - 2021-05-24624Monkeys -Destroyers-
101 - 2021-05-25632Monkeys -Extreme-
103 - 2021-05-27640Bolt-Monkeys -
105 - 2021-05-29655Dynamos-Monkeys -
106 - 2021-05-30665Monkeys -Dynamos-
107 - 2021-05-31671Monkeys -Senators-
109 - 2021-06-02683Dynamos-Monkeys -
110 - 2021-06-03693Monkeys -Extreme-
112 - 2021-06-05704Monkeys -Vikings-
113 - 2021-06-06708Youngblood-Monkeys -
114 - 2021-06-07724Destroyers-Monkeys -
116 - 2021-06-09740Monkeys -Sharks-
118 - 2021-06-11748Shokers-Monkeys -
120 - 2021-06-13764Sharks-Monkeys -
122 - 2021-06-15777Monkeys -Falcons-
123 - 2021-06-16785Monkeys -Senators-
124 - 2021-06-17791Patriotes-Monkeys -
Trade Deadline --- Trades can’t be done after this day is simulated!
125 - 2021-06-18804Monkeys -Guerriers du Nord-
126 - 2021-06-19813Falcons-Monkeys -
129 - 2021-06-22832Falcons-Monkeys -
130 - 2021-06-23840Monkeys -Youngblood-
132 - 2021-06-25854Warriors-Monkeys -
135 - 2021-06-28875Guerriers du Nord-Monkeys -
136 - 2021-06-29877Monkeys -Patriotes-
139 - 2021-07-02901Warriors-Monkeys -



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,484,076$ 1,522,500$ 1,522,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 980,503$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 46 16,232$ 746,672$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20205428160343035731641261750112018915336281111023101681635723576149710078155118821877247876681719276703738511849652.17%1506556.67%651599052.02%44884952.77%622124250.08%12557981140430865443
Total Regular Season5428160343035731641261750112018915336281111023101681635723576149710078155118821877247876681719276703738511849652.17%1506556.67%651599052.02%44884952.77%622124250.08%12557981140430865443
Playoff
201940400000923-1420200000416-122020000057-2091827004500162625743019345467910220.00%181044.44%0278531.76%298334.94%226931.88%875796355725
2019404000001034-2420200000614-820200000420-160102030001810106353338018063306210220.00%151220.00%0197326.03%207327.40%158916.85%7142104396325
201940400000923-1420200000416-122020000057-2091827004500162625743019345467910220.00%181044.44%0278531.76%298334.94%226931.88%875796355725
2019404000001034-2420200000614-820200000420-160102030001810106353338018063306210220.00%151220.00%0197326.03%207327.40%158916.85%7142104396325
Total Playoff160160000038114-76808000002060-40808000001854-360387611400102620536194180162074621615228240820.00%664433.33%09231629.11%9831231.41%7431623.42%318201401148243102