Chiefs

GP: 80 | W: 21 | L: 56 | OTL: 3 | P: 45
GF: 346 | GA: 520 | PP%: 42.37% | PK%: 47.02%
GM : Pascal Lyrette | Morale : 34 | Team Overall : 70
Next Games #805 vs Monsters
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jesper Bratt (R)XX100.00715994857381797750787572736874038730
2Jared McCann (R)XX100.00726690868179727560777381587073069730
3Jakub Vrana (R)XX100.00696296917978767462717672577076066720
4Magnus Paajarvi (R)XX100.00836896878478836750647080537574078710
5Nail YakupovX100.00796890888176607150687472567473074700
6John Hayden (R)X100.00937776808976487060716979526869070700
7Marcus Sorensen (R)X100.00756296877576357050657478566967070680
8Patrick EavesX100.00936895858182356450606775508478065680
9Ryan Pulock (R)X100.00887095798884757750797469566972068730
10Derrick PouliotX100.00806988898483787150776564506972070720
11Samuel Girard (R)X100.00725597867183807150766664506873062700
12Brad HuntX100.00696597847882497350796769506870070690
13Travis Sanheim (R)X100.00716391837681536750696564506868070670
14Anthony DeAngelo (R)X100.00776392847682356950766162506871065670
15Julius Honka (R)X100.00696093897579446550666464506869070660
Scratches
TEAM AVERAGE100.0077659286798060715272697154707206770
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anders Nilsson (R)100.0071707996707174737172717073073730
Scratches
TEAM AVERAGE100.007170799670717473717271707307373
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Phil Housley81747392696999USA553556,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Magnus PaajarviChiefs (SEN)LW/RW35264167235553251927714213.54%2059917.1461824846000004066.67%366217002.2300100239
2Anthony DeAngeloChiefs (SEN)D1931417119521163514188.57%2241822.02224228000032200.00%0932000.8100100100
3Samuel GirardChiefs (SEN)D14211133001794012185.00%1426018.59235216000118000.00%0821001.0000000000
4Jesper BrattChiefs (SEN)LW/RW1011100222010.00%21616.4700002000000033.33%310001.2100000000
Team Total or Average69316798381410935226910317911.52%58129518.7710233312940001506064.10%398070001.5100200339
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anders NilssonChiefs (SEN)G281991-03-23 03:26:20Yes229 Lbs6 ft6NoNoNo1UFAPro & Farm1,875,000$0$0$No
Anthony DeAngeloChiefs (SEN)D231996-03-22 09:26:19Yes181 Lbs5 ft11NoNoNo2ELCPro & Farm1,263,000$0$0$No
Brad HuntChiefs (SEN)D301989-03-22 15:26:19No187 Lbs5 ft9YesNoNo2UFAPro & Farm777,000$0$0$No
Derrick PouliotChiefs (SEN)D241995-03-23 03:26:19No208 Lbs6 ft0NoNoNo1ELCPro & Farm1,288,000$0$0$No
Jakub VranaChiefs (SEN)LW/RW231996-02-28 18:51:00Yes197 Lbs6 ft0NoNoNo2ELCPro & Farm1,425,000$0$0$No
Jared McCannChiefs (SEN)C/LW221997-03-22 15:26:19Yes198 Lbs6 ft1NoNoNo1ELCPro & Farm1,107,000$0$0$No
Jesper BrattChiefs (SEN)LW/RW211998-07-30 06:29:54Yes175 Lbs5 ft10NoNoNo3ELCPro & Farm825,000$0$0$No
John HaydenChiefs (SEN)RW241995-02-14 07:38:07Yes215 Lbs6 ft3NoNoNo1ELCPro & Farm925,000$0$0$No
Julius HonkaChiefs (SEN)D231995-12-03 05:55:34Yes180 Lbs5 ft11NoNoNo2ELCPro & Farm1,425,000$0$0$No
Magnus PaajarviChiefs (SEN)LW/RW271992-03-22 09:26:19Yes206 Lbs6 ft3NoNoNo1RFAPro & Farm900,000$0$0$No
Marcus SorensenChiefs (SEN)LW271992-04-07 08:06:31Yes175 Lbs5 ft11NoNoNo2RFAPro & Farm975,000$0$0$No
Nail YakupovChiefs (SEN)LW251994-03-22 21:26:19No195 Lbs5 ft11YesNoNo1ELCPro & Farm1,100,000$0$0$No
Patrick EavesChiefs (SEN)RW341985-03-22 15:26:19No187 Lbs6 ft0YesNoNo3UFAPro & Farm756,000$0$0$No
Ryan PulockChiefs (SEN)D241994-10-06 10:40:19Yes217 Lbs6 ft2NoNoNo1ELCPro & Farm1,425,000$0$0$No
Samuel GirardChiefs (SEN)D211998-05-12 06:20:05Yes162 Lbs5 ft10NoNoNo3ELCPro & Farm925,000$0$0$No
Travis SanheimChiefs (SEN)D231996-03-29 19:09:43Yes181 Lbs6 ft3NoNoNo2ELCPro & Farm1,325,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1624.94193 Lbs6 ft01.751,144,750$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Cobra421010002322121100000910-1210010001412260.75023426510511451473874736657951611535287018633.33%14842.86%142697643.65%470126237.24%746184740.39%150184419437751366608
2Cyclone523000002226-4321000001616020200000610-440.400224264105114514731304736657951612846367311654.55%18855.56%042697643.65%470126237.24%746184740.39%150184419437751366608
3Destroyers403001001931-12201001001418-420200000513-810.125193655005114514731234736657951614139453810330.00%201240.00%042697643.65%470126237.24%746184740.39%150184419437751366608
4Distraction404000001328-1520200000514-920200000814-600.000132538005114514731034736657951615649363212758.33%18855.56%042697643.65%470126237.24%746184740.39%150184419437751366608
5Dynamos42200000171432110000010822110000076140.5001733500051145147390473665795168326126010550.00%6433.33%042697643.65%470126237.24%746184740.39%150184419437751366608
6Falcons513010002434-10210010001192303000001325-1240.400244468005114514731234736657951614350326712758.33%16756.25%042697643.65%470126237.24%746184740.39%150184419437751366608
7Intrepides403010001726-9201010001113-220200000613-720.25017324900511451473894736657951615136435013646.15%16850.00%042697643.65%470126237.24%746184740.39%150184419437751366608
8L'Euphorie404000002034-1420200000613-7202000001421-700.00020375700511451473924736657951613445305215533.33%161131.25%142697643.65%470126237.24%746184740.39%150184419437751366608
9Monkeys 504001001845-2720200000823-15302001001022-1210.1001834520051145147311747366579516258928254800.00%312325.81%142697643.65%470126237.24%746184740.39%150184419437751366608
10Monsters303000001626-101010000056-1202000001120-900.0001631470051145147392473665795161325022299555.56%11109.09%142697643.65%470126237.24%746184740.39%150184419437751366608
11Patriotes404000001034-2420200000315-1220200000719-1200.0001020300051145147391473665795161815538361119.09%141028.57%142697643.65%470126237.24%746184740.39%150184419437751366608
12Prospects422000002128-7321000001517-210100000611-540.50021426300511451473904736657951614844394511218.18%12833.33%042697643.65%470126237.24%746184740.39%150184419437751366608
13Senators431000002116522000000107321100000119260.75021416210511451473106473665795167324185715746.67%9188.89%142697643.65%470126237.24%746184740.39%150184419437751366608
14Sharks422000001922-321100000109121100000913-440.500193655005114514731274736657951612744285917741.18%14750.00%042697643.65%470126237.24%746184740.39%150184419437751366608
15Sheriefs413000001620-42110000077020200000913-420.250163147005114514731034736657951610732364815746.67%181138.89%142697643.65%470126237.24%746184740.39%150184419437751366608
Total80185603201346520-17440132302101175235-604053301100171285-114450.2813466631009305114514731946473665795162724885668101123610042.37%30216047.02%842697643.65%470126237.24%746184740.39%150184419437751366608
17Viking505000001639-2320200000413-9303000001226-1400.00016324800511451473102473665795162458147518675.00%21861.90%042697643.65%470126237.24%746184740.39%150184419437751366608
18Warriors504000011934-15302000011220-820200000714-710.100193655005114514731074736657951616561428018633.33%21957.14%142697643.65%470126237.24%746184740.39%150184419437751366608
19Wildcats413000001618-221100000107320200000611-520.25016324800511451473844736657951611344185112866.67%9455.56%042697643.65%470126237.24%746184740.39%150184419437751366608
20Youngblood422000001923-421100000910-1211000001013-340.50019375600511451473904736657951612432365911654.55%18383.33%042697643.65%470126237.24%746184740.39%150184419437751366608
_Since Last GM Reset80185603201346520-17440132302101175235-604053301100171285-114450.2813466631009305114514731946473665795162724885668101123610042.37%30216047.02%842697643.65%470126237.24%746184740.39%150184419437751366608
_Vs Conference3982701201166260-94196100110189122-33202170010077138-61210.269166317483205114514739794736657951613044433274941044038.46%1468442.47%542697643.65%470126237.24%746184740.39%150184419437751366608
_Vs Division203140110183139-561035010014768-211009001003671-35100.250831562391051145147347747366579516694249192274491938.78%864745.35%242697643.65%470126237.24%746184740.39%150184419437751366608

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8045OTL1346663100919462724885668101130
All Games
GPWLOTWOTL SOWSOLGFGA
8018563201346520
Home Games
GPWLOTWOTL SOWSOLGFGA
4013232101175235
Visitor Games
GPWLOTWOTL SOWSOLGFGA
405331100171285
Last 10 Games
WLOTWOTL SOWSOL
360100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
23610042.37%30216047.02%8
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
47366579516511451473
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
42697643.65%470126237.24%746184740.39%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
150184419437751366608


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-05-068Chiefs2Monkeys 10LBoxScore
2 - 2019-05-0711Cyclone5Chiefs7WBoxScore
4 - 2019-05-0925Prospects4Chiefs6WBoxScore
6 - 2019-05-1139Dynamos3Chiefs6WBoxScore
8 - 2019-05-1346Chiefs2Falcons9LBoxScore
10 - 2019-05-1555Chiefs5Viking11LBoxScore
13 - 2019-05-1869Chiefs5Wildcats6LBoxScore
14 - 2019-05-1976Chiefs2Cyclone4LBoxScore
16 - 2019-05-2182Warriors5Chiefs2LBoxScore
18 - 2019-05-2397Cobra5Chiefs3LBoxScore
20 - 2019-05-25103Distraction8Chiefs4LBoxScore
22 - 2019-05-27119Sharks5Chiefs1LBoxScore
24 - 2019-05-29126Chiefs2Intrepides4LBoxScore
26 - 2019-05-31137Warriors10Chiefs6LBoxScore
28 - 2019-06-02147Chiefs6Falcons9LBoxScore
30 - 2019-06-04158Chiefs4Sheriefs6LBoxScore
32 - 2019-06-06164Falcons4Chiefs5WXBoxScore
35 - 2019-06-09177Chiefs1Wildcats5LBoxScore
36 - 2019-06-10188Dynamos5Chiefs4LBoxScore
38 - 2019-06-12200Senators4Chiefs5WBoxScore
40 - 2019-06-14210Chiefs5Falcons7LBoxScore
42 - 2019-06-16217Chiefs4Cyclone6LBoxScore
45 - 2019-06-19227Falcons5Chiefs6WBoxScore
47 - 2019-06-21240Destroyers9Chiefs6LBoxScore
49 - 2019-06-23250Chiefs7L'Euphorie11LBoxScore
50 - 2019-06-24256Chiefs7Cobra6WBoxScore
52 - 2019-06-26264Monkeys 12Chiefs3LBoxScore
55 - 2019-06-29279Chiefs3Viking10LBoxScore
56 - 2019-06-30287Viking7Chiefs2LBoxScore
58 - 2019-07-02291Chiefs8Senators3WBoxScore
60 - 2019-07-04309Cobra5Chiefs6WBoxScore
62 - 2019-07-06319Chiefs5Sheriefs7LBoxScore
64 - 2019-07-08322Chiefs3Warriors6LBoxScore
66 - 2019-07-10335Viking6Chiefs2LBoxScore
68 - 2019-07-12346Destroyers9Chiefs8LXBoxScore
71 - 2019-07-15360Sheriefs2Chiefs4WBoxScore
74 - 2019-07-18372Chiefs4Destroyers7LBoxScore
75 - 2019-07-19382Prospects7Chiefs2LBoxScore
78 - 2019-07-22397Chiefs6Monsters11LBoxScore
79 - 2019-07-23406Patriotes11Chiefs1LBoxScore
81 - 2019-07-25417Chiefs3Senators6LBoxScore
83 - 2019-07-27425Chiefs5Monsters9LBoxScore
84 - 2019-07-28430L'Euphorie6Chiefs3LBoxScore
86 - 2019-07-30445Intrepides6Chiefs7WXBoxScore
87 - 2019-07-31457Warriors5Chiefs4LXXBoxScore
89 - 2019-08-02465Chiefs4Intrepides9LBoxScore
91 - 2019-08-04476Chiefs3Sharks8LBoxScore
92 - 2019-08-05484Patriotes4Chiefs2LBoxScore
94 - 2019-08-07496Chiefs4Viking5LBoxScore
96 - 2019-08-09505L'Euphorie7Chiefs3LBoxScore
98 - 2019-08-11515Chiefs4Warriors8LBoxScore
99 - 2019-08-12522Distraction6Chiefs1LBoxScore
101 - 2019-08-14535Chiefs7Cobra6WXBoxScore
102 - 2019-08-15543Sharks4Chiefs9WBoxScore
104 - 2019-08-17557Chiefs7Distraction8LBoxScore
105 - 2019-08-18561Chiefs6Sharks5WBoxScore
107 - 2019-08-20569Cyclone7Chiefs4LBoxScore
108 - 2019-08-21582Youngblood3Chiefs5WBoxScore
110 - 2019-08-23593Chiefs4Youngblood8LBoxScore
112 - 2019-08-25600Chiefs1Distraction6LBoxScore
113 - 2019-08-26609Senators3Chiefs5WBoxScore
115 - 2019-08-28622Chiefs7L'Euphorie10LBoxScore
116 - 2019-08-29630Monkeys 11Chiefs5LBoxScore
118 - 2019-08-31638Chiefs6Youngblood5WBoxScore
119 - 2019-09-01645Sheriefs5Chiefs3LBoxScore
120 - 2019-09-02659Wildcats1Chiefs5WBoxScore
122 - 2019-09-04670Chiefs2Patriotes10LBoxScore
123 - 2019-09-05682Youngblood7Chiefs4LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
124 - 2019-09-06686Chiefs1Dynamos2LBoxScore
125 - 2019-09-07696Chiefs3Monkeys 6LBoxScore
127 - 2019-09-09707Cyclone4Chiefs5WBoxScore
128 - 2019-09-10712Chiefs5Patriotes9LBoxScore
129 - 2019-09-11722Chiefs6Dynamos4WBoxScore
131 - 2019-09-13735Prospects6Chiefs7WBoxScore
132 - 2019-09-14738Chiefs1Destroyers6LBoxScore
135 - 2019-09-17753Monsters6Chiefs5LBoxScore
136 - 2019-09-18763Chiefs6Prospects11LBoxScore
139 - 2019-09-21777Wildcats6Chiefs5LBoxScore
140 - 2019-09-22788Intrepides7Chiefs4LBoxScore
141 - 2019-09-23793Chiefs5Monkeys 6LXBoxScore
143 - 2019-09-25805Monsters-Chiefs-
144 - 2019-09-26808Chiefs-Prospects-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,275,147$ 1,831,600$ 1,594,600$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
12,545$ 1,734,380$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 4 16,353$ 65,412$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201880185603201346520-17440132302101175235-604053301100171285-114453466631009305114514731946473665795162724885668101123610042.37%30216047.02%842697643.65%470126237.24%746184740.39%150184419437751366608
Total Regular Season80185603201346520-17440132302101175235-604053301100171285-114453466631009305114514731946473665795162724885668101123610042.37%30216047.02%842697643.65%470126237.24%746184740.39%150184419437751366608
Playoff
2017514000001931-12312000001320-720200000611-521935540011080122215744013841387913430.77%19763.16%1255743.86%296346.03%5111245.54%1197297438342
Total Playoff514000001931-12312000001320-720200000611-521935540011080122215744013841387913430.77%19763.16%1255743.86%296346.03%5111245.54%1197297438342