Monsters

GP: 44 | W: 30 | L: 13 | OTL: 1 | P: 61
GF: 268 | GA: 216 | PP%: 55.36% | PK%: 56.86%
GM : Dave Langevin | Morale : 71 | Team Overall : 71
Next Games #449 vs Dynamos
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Joonas DonskoiXX98.00696391877980717850777878787375079740
2Matt NietoXX100.00686495867980797450697889597576060740
3Charles Hudon (R)X100.00896889848180767556777374616871076730
4Nick Ritchie (R)X100.00947680849479807350737374647174079730
5Melker Karlsson (R)X100.00806692887979757070697185537475048730
6Brock McGinn (R)XX100.00896294868080857455707775717074040730
7Tommy WingelsXXX100.00927287848677787066677278547977078720
8Tyler Bertuzzi (R)X100.00806983837980517750807476566868058710
9Joel WardX100.00737491819277546962687080538681079710
10Nikolay Goldobin (R)X100.00646096907978407450697868626870075690
11Vince Dunn (R)X99.00686794858183827250766768506871075710
12Yannick WeberX99.00786692808178496550656567507774079680
13Andrej SustrX100.00557491799078466750676667507678080670
14Adam Clendening (R)X100.00686691857981356450656267506871053660
Scratches
TEAM AVERAGE99.7176689084837964725471727558737406971
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Curtis McElhinney100.0076657588747675757477767275075740
Scratches
TEAM AVERAGE100.007665758874767575747776727507574
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Glen Gulutzan77827884756799CAN422950,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joonas DonskoiMonsters (FGI)LW/RW425373126-62210855627710115819.13%25102624.4419355434972135705161.47%3407251062.45011101156
2Tommy WingelsMonsters (FGI)C/LW/RW443247792215584571784211117.98%1980618.32718251472000032166.35%5323638041.9600010452
3Joel WardMonsters (FGI)RW44353671248058381985210417.68%1979718.121013232172000004079.59%494228021.7800000323
4Matt NietoMonsters (FGI)LW/RW293625611955124156589123.08%2069023.801392223700225515154.76%423635041.7712001552
5Vince DunnMonsters (FGI)D4475158-84115504611455516.14%60117126.6262127161070006740066.67%32358000.9900021112
6Melker KarlssonMonsters (FGI)C23142741-82410524759225223.73%1648621.157142111561012191066.79%5361915001.6901011223
7Brock McGinnMonsters (FGI)LW/RW2515183332020472384195117.86%2046518.64941317500001211170.00%202414001.4202031030
8Charles HudonMonsters (FGI)LW44111829-1327155742104324710.58%1964914.7710111000000167.36%4841726000.8901012011
9Adam ClendeningMonsters (FGI)D44524294443038316522287.69%4083118.893811968011154000.00%01036000.7000060001
10Andrej SustrMonsters (FGI)D44522271513528316224158.06%3886319.6338111171000157000.00%01644000.6300610002
11Nikolay GoldobinMonsters (FGI)RW44121426-1537253526109365511.01%2355612.6504406000002066.67%302424000.9301131113
12Yannick WeberMonsters (FGI)D4462026-7241059536441409.38%52114426.01681412106000277200.00%01375000.4500110011
13Nick RitchieMonsters (FGI)LW449716-16155573466235113.64%1657313.03112120002271051.52%331525100.5612001100
14Tyler BertuzziMonsters (FGI)LW253811412025213112129.68%1537214.891231101012120069.23%26621000.5911000000
Team Total or Average540243390633-14349185726529156753986615.51%3821043519.32861452311717944482747023565.82%20953534901161.213119208282626
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Curtis McElhinneyMonsters (FGI)1312100.9332.137900028417207100.91712130131
Team Total or Average1312100.9332.137900028417207100.91712130131


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam ClendeningMonsters (FGI)D261993-03-22 15:26:19Yes190 Lbs6 ft0YesNoNo1ELCPro & Farm650,000$0$0$No
Andrej SustrMonsters (FGI)D281991-03-23 03:26:19No225 Lbs6 ft8NoNoNo1UFAPro & Farm1,462,500$0$0$No
Brock McGinnMonsters (FGI)LW/RW241995-03-23 03:26:19Yes185 Lbs6 ft0NoNoNo2ELCPro & Farm925,000$0$0$No
Charles HudonMonsters (FGI)LW251994-06-23 17:43:45Yes196 Lbs5 ft10NoNoNo2ELCPro & Farm650,000$0$0$No
Curtis McElhinneyMonsters (FGI)G351984-03-22 09:26:20No200 Lbs6 ft3YesNoNo2UFAPro & Farm785,000$0$0$No
Joel WardMonsters (FGI)RW381981-03-22 15:26:19No226 Lbs6 ft1YesNoNo1UFAPro & Farm965,000$0$0$No
Joonas DonskoiMonsters (FGI)LW/RW261993-03-22 15:26:19No190 Lbs6 ft0NoNoNo2ELCPro & Farm1,900,000$0$0$No
Matt NietoMonsters (FGI)LW/RW261993-03-22 15:26:19No190 Lbs5 ft11NoNoNo1ELCPro & Farm1,000,000$0$0$No
Melker KarlssonMonsters (FGI)C281991-03-23 03:26:19Yes180 Lbs6 ft0NoNoNo1UFAPro & Farm1,500,000$0$0$No
Nick RitchieMonsters (FGI)LW231996-03-22 09:26:19Yes232 Lbs6 ft2NoNoNo1ELCPro & Farm1,627,000$0$0$No
Nikolay GoldobinMonsters (FGI)RW231995-10-07 17:54:06Yes196 Lbs5 ft11NoNoNo2ELCPro & Farm1,137,500$0$0$No
Tommy WingelsMonsters (FGI)C/LW/RW301989-03-22 15:26:19No200 Lbs6 ft0YesNoNo1UFAPro & Farm575,000$0$0$No
Tyler BertuzziMonsters (FGI)LW241995-02-24 07:42:46Yes190 Lbs6 ft0NoNoNo1ELCPro & Farm925,000$0$0$No
Vince DunnMonsters (FGI)D221996-10-29 18:02:11Yes203 Lbs6 ft0NoNoNo1ELCPro & Farm653,333$0$0$No
Yannick WeberMonsters (FGI)D301989-03-22 15:26:19No193 Lbs5 ft11YesNoNo1UFAPro & Farm579,600$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1527.20200 Lbs6 ft11.331,022,329$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joonas Donskoi40122
2Tommy WingelsJoel Ward30122
3Nick RitchieCharles HudonNikolay Goldobin20122
4Charles HudonJoonas Donskoi10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnYannick Weber40122
2Andrej SustrAdam Clendening30122
320122
4Vince DunnYannick Weber10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Joonas Donskoi60122
2Tommy WingelsJoel Ward40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnYannick Weber60122
2Andrej SustrAdam Clendening40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joonas Donskoi60122
2Nick Ritchie40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnYannick Weber60122
2Andrej SustrAdam Clendening40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joonas Donskoi60122Vince DunnYannick Weber60122
240122Andrej SustrAdam Clendening40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Joonas Donskoi60122
2Nick Ritchie40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnYannick Weber60122
2Andrej SustrAdam Clendening40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Joonas DonskoiVince DunnYannick Weber
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Joonas DonskoiVince DunnYannick Weber
Extra Forwards
Normal PowerPlayPenalty Kill
, Nikolay Goldobin, , Nikolay Goldobin
Extra Defensemen
Normal PowerPlayPenalty Kill
Andrej Sustr, Adam Clendening, Vince DunnAndrej SustrAdam Clendening, Vince Dunn
Penalty Shots
Joonas Donskoi, , , Nick Ritchie,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Chiefs220000002011922000000201190000000000041.0002036560085107725946315615001558914311010100.00%7528.57%054688761.56%42270160.20%57791263.27%1065629817320769453
2Cobra110000001331011000000133100000000000021.000132235008510772554631561500152530216583.33%000.00%054688761.56%42270160.20%57791263.27%1065629817320769453
3Cyclone440000003623132200000014104220000002213981.000365793008510772516063156150015127394877251560.00%9544.44%054688761.56%42270160.20%57791263.27%1065629817320769453
4Destroyers412010001319-611000000312302010001018-840.5001323360085107725966315615001511335598616743.75%7357.14%154688761.56%42270160.20%57791263.27%1065629817320769453
5Distraction10000010211100000102110000000000021.00021300851077251863156150015206215100.00%10100.00%054688761.56%42270160.20%57791263.27%1065629817320769453
6Dynamos32001000171162100100012841100000053261.000172643008510772588631561500158529147413646.15%7271.43%054688761.56%42270160.20%57791263.27%1065629817320769453
7Falcons2200000014681100000011471100000032141.0001426400085107725926315615001540108362150.00%4175.00%054688761.56%42270160.20%57791263.27%1065629817320769453
8Intrepides20200000714-70000000000020200000714-700.0007132000851077258363156150015873023315240.00%4175.00%054688761.56%42270160.20%57791263.27%1065629817320769453
9L'Euphorie11000000835110000008350000000000021.00081523008510772547631561500152113017000.00%000.00%054688761.56%42270160.20%57791263.27%1065629817320769453
10Monkeys 403000101325-1220200000915-620100010410-620.2501319320085107725142631561500152076047528337.50%6516.67%054688761.56%42270160.20%57791263.27%1065629817320769453
11Patriotes422000001921-222000000136720200000615-940.500193352008510772516763156150015113326886191052.63%14657.14%154688761.56%42270160.20%57791263.27%1065629817320769453
12Prospects20200000816-80000000000020200000816-800.000814220085107725101631561500158222354910660.00%5260.00%054688761.56%42270160.20%57791263.27%1065629817320769453
13Senators320001001310300000000000320001001310350.833132033008510772513863156150015602016588112.50%8275.00%154688761.56%42270160.20%57791263.27%1065629817320769453
14Sharks11000000981110000009810000000000021.0009142300851077253863156150015401012203266.67%110.00%054688761.56%42270160.20%57791263.27%1065629817320769453
15Sheriefs220000002091122000000209110000000000041.00020305000851077258163156150015481311409555.56%3166.67%054688761.56%42270160.20%57791263.27%1065629817320769453
Total4426130212026821652221730101016910069229100111099116-17610.693268434702008510772516956315615001514524394248451689355.36%1024456.86%454688761.56%42270160.20%57791263.27%1065629817320769453
17Viking312000001520-5211000001314-11010000026-420.3331523380085107725106631561500151534926588450.00%13469.23%054688761.56%42270160.20%57791263.27%1065629817320769453
18Wildcats330000002982122000000227151100000071661.00029457400851077251196315615001595272552191473.68%5340.00%054688761.56%42270160.20%57791263.27%1065629817320769453
19Youngblood2200000012840000000000022000000128441.00012172900851077257163156150015783216426233.33%8362.50%154688761.56%42270160.20%57791263.27%1065629817320769453
_Since Last GM Reset4426130212026821652221730101016910069229100111099116-17610.693268434702008510772516956315615001514524394248451689355.36%1024456.86%454688761.56%42270160.20%57791263.27%1065629817320769453
_Vs Conference2615702110145126191292010008255271465011106371-8370.7121452403850085107725977631561500158032342745001015352.48%622953.23%354688761.56%42270160.20%57791263.27%1065629817320769453
_Vs Division1474021006261154001000281513934011003446-12190.67962102164008510772548963156150015371116157304562442.86%361363.89%354688761.56%42270160.20%57791263.27%1065629817320769453

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4461W22684347021695145243942484500
All Games
GPWLOTWOTL SOWSOLGFGA
4426132120268216
Home Games
GPWLOTWOTL SOWSOLGFGA
221731010169100
Visitor Games
GPWLOTWOTL SOWSOLGFGA
22910111099116
Last 10 Games
WLOTWOTL SOWSOL
360100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1689355.36%1024456.86%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
6315615001585107725
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
54688761.56%42270160.20%57791263.27%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1065629817320769453


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-05-0610Monsters4Youngblood2WBoxScore
2 - 2019-05-0712Patriotes1Monsters5WBoxScore
4 - 2019-05-0926Monsters5Dynamos3WBoxScore
6 - 2019-05-1132Destroyers1Monsters3WBoxScore
8 - 2019-05-1344Wildcats1Monsters10WBoxScore
10 - 2019-05-1552Monsters5Destroyers7LBoxScore
12 - 2019-05-1761Monsters5Senators2WBoxScore
15 - 2019-05-2078Patriotes5Monsters8WBoxScore
16 - 2019-05-2189Monsters2Monkeys 1WXXBoxScore
18 - 2019-05-2392Dynamos2Monsters5WBoxScore
21 - 2019-05-26109Monsters7Wildcats1WBoxScore
22 - 2019-05-27114Viking5Monsters3LBoxScore
24 - 2019-05-29128Distraction1Monsters2WXXBoxScore
26 - 2019-05-31139Monsters4Destroyers3WXBoxScore
28 - 2019-06-02145Dynamos6Monsters7WXBoxScore
30 - 2019-06-04159Monsters11Cyclone6WBoxScore
33 - 2019-06-07169Monsters1Destroyers8LBoxScore
34 - 2019-06-08173Monsters3Intrepides7LBoxScore
36 - 2019-06-10182Cyclone5Monsters7WBoxScore
38 - 2019-06-12197Viking9Monsters10WBoxScore
40 - 2019-06-14202Monsters2Monkeys 9LBoxScore
42 - 2019-06-16215Sheriefs4Monsters9WBoxScore
45 - 2019-06-19229Cyclone5Monsters7WBoxScore
46 - 2019-06-20232Monsters3Prospects5LBoxScore
48 - 2019-06-22241Monsters8Youngblood6WBoxScore
50 - 2019-06-24258Monsters5Senators4WBoxScore
52 - 2019-06-26263Falcons4Monsters11WBoxScore
54 - 2019-06-28275Sharks8Monsters9WBoxScore
56 - 2019-06-30282Monsters3Falcons2WBoxScore
58 - 2019-07-02296Wildcats6Monsters12WBoxScore
60 - 2019-07-04304Monsters5Prospects11LBoxScore
62 - 2019-07-06312L'Euphorie3Monsters8WBoxScore
64 - 2019-07-08326Sheriefs5Monsters11WBoxScore
66 - 2019-07-10337Monsters11Cyclone7WBoxScore
69 - 2019-07-13348Monsters2Patriotes7LBoxScore
70 - 2019-07-14351Monkeys 9Monsters7LBoxScore
73 - 2019-07-17369Monkeys 6Monsters2LBoxScore
75 - 2019-07-19378Monsters4Intrepides7LBoxScore
76 - 2019-07-20387Monsters3Senators4LXBoxScore
78 - 2019-07-22397Chiefs6Monsters11WBoxScore
79 - 2019-07-23409Monsters2Viking6LBoxScore
81 - 2019-07-25415Monsters4Patriotes8LBoxScore
83 - 2019-07-27425Chiefs5Monsters9WBoxScore
84 - 2019-07-28435Cobra3Monsters13WBoxScore
86 - 2019-07-30449Dynamos-Monsters-
87 - 2019-07-31458Monsters-Falcons-
89 - 2019-08-02466Falcons-Monsters-
91 - 2019-08-04478Monsters-Distraction-
92 - 2019-08-05486Monsters-Sharks-
94 - 2019-08-07495Warriors-Monsters-
96 - 2019-08-09504Monsters-Wildcats-
98 - 2019-08-11516Youngblood-Monsters-
99 - 2019-08-12527Warriors-Monsters-
101 - 2019-08-14536Monsters-Viking-
103 - 2019-08-16547Cobra-Monsters-
104 - 2019-08-17552Monsters-Sheriefs-
105 - 2019-08-18566Monsters-Sheriefs-
108 - 2019-08-21576L'Euphorie-Monsters-
109 - 2019-08-22584Monsters-Dynamos-
111 - 2019-08-24595Distraction-Monsters-
113 - 2019-08-26605Intrepides-Monsters-
114 - 2019-08-27615Monsters-Distraction-
116 - 2019-08-29625Monsters-Dynamos-
117 - 2019-08-30634Intrepides-Monsters-
119 - 2019-09-01648Monsters-L'Euphorie-
120 - 2019-09-02655Prospects-Monsters-
122 - 2019-09-04669Prospects-Monsters-
123 - 2019-09-05679Senators-Monsters-
125 - 2019-09-07694Monsters-Warriors-
126 - 2019-09-08703Patriotes-Monsters-
127 - 2019-09-09708Monsters-Sharks-
129 - 2019-09-11720Monsters-Cobra-
130 - 2019-09-12731Destroyers-Monsters-
Trade Deadline --- Trades can’t be done after this day is simulated!
132 - 2019-09-14743Senators-Monsters-
135 - 2019-09-17753Monsters-Chiefs-
137 - 2019-09-19767Sharks-Monsters-
138 - 2019-09-20769Monsters-Warriors-
139 - 2019-09-21782Monsters-L'Euphorie-
140 - 2019-09-22791Destroyers-Monsters-
142 - 2019-09-24799Monsters-Cobra-
143 - 2019-09-25805Monsters-Chiefs-
145 - 2019-09-27820Youngblood-Monsters-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
19 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,395,516$ 1,533,493$ 1,370,793$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
10,503$ 848,928$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 62 17,010$ 1,054,620$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20184426130212026821652221730101016910069229100111099116-1761268434702008510772516956315615001514524394248451689355.36%1024456.86%454688761.56%42270160.20%57791263.27%1065629817320769453
Total Regular Season4426130212026821652221730101016910069229100111099116-1761268434702008510772516956315615001514524394248451689355.36%1024456.86%454688761.56%42270160.20%57791263.27%1065629817320769453