Cyclone

GP: 81 | W: 28 | L: 53 | OTL: 0 | P: 56
GF: 361 | GA: 509 | PP%: 41.00% | PK%: 48.99%
GM : Pascal Poirier | Morale : 39 | Team Overall : 70
Next Games #818 vs Prospects
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Tobias RiederX100.00826398937980837257707478567376067740
2Chris Wagner (R)X100.00956790838679836868676982527173070720
3Johan Larsson (R)XX100.00866887798480856878696678507275070710
4Anton Slepyshev (R)X100.00827296808877527050687274546970070690
5Tyler Motte (R)XX100.00916597848177476850647180536869041690
6Curtis McKenzie (R)X100.00807167828774356950756273506972070670
7Phil Varone (R)X100.00696294817970356165606270506866070630
8Dmitry KulikovX100.00807292888583686750686679507977070740
9Kevin Connauton (R)X100.00886894848581787150687471567274052730
10Joakim Ryan (R)X100.00706297867782676850696677506871070710
11Neal Pionk (R)X100.00896891828088357550846577506565070710
12Markus Nutivaara (R)X100.00736495857882667450777169537068031710
13Zach BogosianX100.00827677848985356450656271507885070700
14Tim Heed (R)X100.00616594867782357350757069626664070680
Scratches
TEAM AVERAGE100.0081679184838057695570687553717206470
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
TEAM AVERAGE0.000000000000000000
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Travis Green80787891696899CAN483900,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Markus NutivaaraCyclone (STO)D4873441-1120253820595843.41%4168714.321341200000000.00%03036001.1900000559
2Kevin ConnautonCyclone (STO)D3663339-175342417761713.39%4351314.270332200000110.00%02531001.52000015106
3Tyler MotteCyclone (STO)LW/RW55191938-9953335202671539.41%215439.8900000000003174.19%313923101.4011001869
Team Total or Average1393286118-21181092975842233085.48%105174412.5516735000014274.19%319490101.3511002182124
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anton SlepyshevCyclone (STO)LW241995-03-23 03:26:19Yes221 Lbs6 ft2NoNoNo1ELCPro & Farm1,525,000$0$0$No
Chris WagnerCyclone (STO)C271992-03-22 09:26:19Yes198 Lbs6 ft0NoNoNo1RFAPro & Farm637,500$0$0$No
Curtis McKenzieCyclone (STO)LW271992-03-22 09:26:19Yes205 Lbs6 ft2NoNoNo1RFAPro & Farm1,300,000$0$0$No
Dmitry KulikovCyclone (STO)D281991-03-23 03:26:19No204 Lbs6 ft1YesNoNo3UFAPro & Farm2,500,000$0$0$No
Joakim RyanCyclone (STO)D261993-06-17 07:31:17Yes185 Lbs5 ft11NoNoNo2ELCPro & Farm650,000$0$0$No
Johan LarssonCyclone (STO)C/LW261993-03-22 15:26:19Yes198 Lbs5 ft11NoNoNo1ELCPro & Farm1,462,500$0$0$No
Kevin ConnautonCyclone (STO)D281991-03-23 03:26:19Yes200 Lbs6 ft2NoNoNo1UFAPro & Farm1,000,000$0$0$No
Markus NutivaaraCyclone (STO)D241995-03-23 03:26:19Yes191 Lbs6 ft1NoNoNo1ELCPro & Farm925,000$0$0$No
Neal PionkCyclone (STO)D241995-07-29 07:51:12Yes186 Lbs6 ft0NoNoNo2ELCPro & Farm1,775,000$0$0$No
Phil VaroneCyclone (STO)C281990-12-04 03:26:19Yes193 Lbs5 ft10NoNoNo2UFAPro & Farm900,000$0$0$No
Tim HeedCyclone (STO)D281991-01-27 08:56:38Yes185 Lbs6 ft0NoNoNo2UFAPro & Farm2,500,000$0$0$No
Tobias RiederCyclone (STO)RW251994-03-22 21:26:19No185 Lbs5 ft11NoNoNo1ELCPro & Farm2,225,000$0$0$No
Tyler MotteCyclone (STO)LW/RW231996-03-22 09:26:19Yes191 Lbs5 ft10NoNoNo2ELCPro & Farm925,000$0$0$No
Zach BogosianCyclone (STO)D281991-03-23 03:26:19No215 Lbs6 ft3NoNoNo3UFAPro & Farm2,000,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1426.14197 Lbs6 ft01.641,451,786$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
320122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Chiefs5320000026224220000001064312000001616060.600264672005116214451286238118232113047229418844.44%11645.45%0479118040.59%468120938.71%731181840.21%160593318867781378622
2Cobra413000001419-521100000101002020000049-520.25014274100511621445956238118232110345227010660.00%11190.91%0479118040.59%468120938.71%731181840.21%160593318867781378622
3Destroyers422000001919021100000710-321100000129340.500193756005116214451066238118232115251395812541.67%18477.78%0479118040.59%468120938.71%731181840.21%160593318867781378622
4Distraction504010002043-23302010001421-720200000622-1620.200203959005116214451466238118232117165566512541.67%261830.77%2479118040.59%468120938.71%731181840.21%160593318867781378622
5Dynamos412010002422220101000911-2211000001511440.500244468005116214451166238118232110122229012650.00%11554.55%1479118040.59%468120938.71%731181840.21%160593318867781378622
6Falcons5410000025196321000001513222000000106480.800254570005116214451566238118232113245217514857.14%9722.22%0479118040.59%468120938.71%731181840.21%160593318867781378622
7Intrepides413000001034-2421100000514-920200000520-1520.25010192900511621445906238118232119783534812325.00%191236.84%1479118040.59%468120938.71%731181840.21%160593318867781378622
8L'Euphorie422000002023-3211000001091211000001014-440.500203858005116214451086238118232111559385813323.08%191142.11%1479118040.59%468120938.71%731181840.21%160593318867781378622
9Monkeys 505000001046-3620200000518-1330300000528-2300.000101929005116214451776238118232123091767719526.32%181233.33%0479118040.59%468120938.71%731181840.21%160593318867781378622
10Monsters404000002336-13202000001322-9202000001014-400.00023446700511621445127623811823211605360409555.56%251540.00%1479118040.59%468120938.71%731181840.21%160593318867781378622
11Patriotes404000001629-1320200000715-820200000914-500.000163147005116214451126238118232116150396017741.18%17758.82%1479118040.59%468120938.71%731181840.21%160593318867781378622
12Prospects30300000515-101010000025-320200000310-700.00058130051162144565623811823211084516549111.11%8362.50%0479118040.59%468120938.71%731181840.21%160593318867781378622
13Senators422000002125-421100000912-3211000001213-140.50021406100511621445109623811823219629287026934.62%141028.57%1479118040.59%468120938.71%731181840.21%160593318867781378622
14Sharks413000002030-10211000001213-120200000817-920.25020395910511621445132623811823211535135519444.44%151033.33%0479118040.59%468120938.71%731181840.21%160593318867781378622
15Sheriefs4400000027189220000001486220000001310381.00027527900511621445133623811823219129207715960.00%10550.00%3479118040.59%468120938.71%731181840.21%160593318867781378622
Total81245303010361509-14840142203010188238-5041103100000173271-98560.3463616761037105116214452272623811823212673975690124826110741.00%29815248.99%14479118040.59%468120938.71%731181840.21%160593318867781378622
17Viking404000002030-10202000001013-3202000001017-700.000203858005116214451286238118232114663325717847.06%16850.00%0479118040.59%468120938.71%731181840.21%160593318867781378622
18Warriors504000101630-1420100010813-530300000817-920.200162844005116214451116238118232114049537517741.18%221054.55%0479118040.59%468120938.71%731181840.21%160593318867781378622
19Wildcats522010002221131101000151322110000078-160.600224062005116214451346238118232114441267011218.18%13469.23%0479118040.59%468120938.71%731181840.21%160593318867781378622
20Youngblood413000002328-52110000013121202000001016-620.2502342650051162144599623811823211435732599666.67%16475.00%3479118040.59%468120938.71%731181840.21%160593318867781378622
_Since Last GM Reset81245303010361509-14840142203010188238-5041103100000173271-98560.3463616761037105116214452272623811823212673975690124826110741.00%29815248.99%14479118040.59%468120938.71%731181840.21%160593318867781378622
_Vs Conference40122601010180248-68196110101083120-37216150000097128-31280.3501803345140051162144511426238118232113024373606391446041.67%1457647.59%4479118040.59%468120938.71%731181840.21%160593318867781378622
_Vs Division207120001077117-40944000103850-121138000003967-28160.400771382150051162144557262381182321632232172321682841.18%603541.67%0479118040.59%468120938.71%731181840.21%160593318867781378622

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
8156W1361676103722722673975690124810
All Games
GPWLOTWOTL SOWSOLGFGA
8124533010361509
Home Games
GPWLOTWOTL SOWSOLGFGA
4014223010188238
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4110310000173271
Last 10 Games
WLOTWOTL SOWSOL
361000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
26110741.00%29815248.99%14
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
62381182321511621445
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
479118040.59%468120938.71%731181840.21%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
160593318867781378622


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-05-066Distraction6Cyclone3LBoxScore
2 - 2019-05-0711Cyclone5Chiefs7LBoxScore
4 - 2019-05-0924Wildcats3Cyclone5WBoxScore
6 - 2019-05-1134Cyclone2Cobra6LBoxScore
8 - 2019-05-1345Cyclone3Warriors7LBoxScore
10 - 2019-05-1557Cyclone0Monkeys 7LBoxScore
12 - 2019-05-1763Falcons3Cyclone6WBoxScore
14 - 2019-05-1976Chiefs2Cyclone4WBoxScore
16 - 2019-05-2188Wildcats3Cyclone4WXBoxScore
18 - 2019-05-23100Cyclone4Monkeys 10LBoxScore
21 - 2019-05-26108Viking8Cyclone6LBoxScore
22 - 2019-05-27118Cyclone5Falcons2WBoxScore
24 - 2019-05-29125Cyclone4Dynamos5LBoxScore
26 - 2019-05-31133Cyclone7L'Euphorie5WBoxScore
28 - 2019-06-02143Monkeys 10Cyclone3LBoxScore
30 - 2019-06-04159Monsters11Cyclone6LBoxScore
32 - 2019-06-06165Distraction8Cyclone3LBoxScore
34 - 2019-06-08175Cyclone8Sheriefs6WBoxScore
36 - 2019-06-10182Cyclone5Monsters7LBoxScore
38 - 2019-06-12195Cyclone7Sharks9LBoxScore
40 - 2019-06-14203Wildcats7Cyclone6LBoxScore
42 - 2019-06-16217Chiefs4Cyclone6WBoxScore
45 - 2019-06-19229Cyclone5Monsters7LBoxScore
46 - 2019-06-20234Cyclone11Dynamos6WBoxScore
48 - 2019-06-22244Cobra5Cyclone7WBoxScore
50 - 2019-06-24254Sheriefs4Cyclone9WBoxScore
53 - 2019-06-27268Cyclone5Wildcats3WBoxScore
54 - 2019-06-28271Falcons4Cyclone8WBoxScore
56 - 2019-06-30284Monkeys 8Cyclone2LBoxScore
58 - 2019-07-02295Cyclone5Falcons4WBoxScore
60 - 2019-07-04307Destroyers5Cyclone6WBoxScore
62 - 2019-07-06314Cyclone10Destroyers2WBoxScore
64 - 2019-07-08321Cyclone1Monkeys 11LBoxScore
66 - 2019-07-10337Monsters11Cyclone7LBoxScore
68 - 2019-07-12342Cyclone1Sharks8LBoxScore
71 - 2019-07-15359Senators7Cyclone3LBoxScore
74 - 2019-07-18370Distraction7Cyclone8WXBoxScore
76 - 2019-07-20383Sheriefs4Cyclone5WBoxScore
78 - 2019-07-22399Cyclone2Prospects3LBoxScore
79 - 2019-07-23405Falcons6Cyclone1LBoxScore
81 - 2019-07-25418Warriors9Cyclone3LBoxScore
83 - 2019-07-27426Cyclone2Wildcats5LBoxScore
84 - 2019-07-28437Cyclone5Viking10LBoxScore
86 - 2019-07-30446Viking5Cyclone4LBoxScore
87 - 2019-07-31456Cyclone3Intrepides10LBoxScore
89 - 2019-08-02464Patriotes6Cyclone3LBoxScore
91 - 2019-08-04474Cyclone4Patriotes7LBoxScore
92 - 2019-08-05485Intrepides12Cyclone1LBoxScore
94 - 2019-08-07497Youngblood8Cyclone4LBoxScore
96 - 2019-08-09503Cyclone2Intrepides10LBoxScore
98 - 2019-08-11518Cyclone2Cobra3LBoxScore
99 - 2019-08-12523Prospects5Cyclone2LBoxScore
101 - 2019-08-14537Cyclone2Distraction11LBoxScore
103 - 2019-08-16544Warriors4Cyclone5WXXBoxScore
104 - 2019-08-17555Cyclone3Warriors5LBoxScore
105 - 2019-08-18562Cyclone1Prospects7LBoxScore
107 - 2019-08-20569Cyclone7Chiefs4WBoxScore
108 - 2019-08-21577Patriotes9Cyclone4LBoxScore
110 - 2019-08-23590Cobra5Cyclone3LBoxScore
112 - 2019-08-25602Cyclone7Senators5WBoxScore
113 - 2019-08-26610Youngblood4Cyclone9WBoxScore
116 - 2019-08-29623Cyclone5Youngblood8LBoxScore
117 - 2019-08-30632Sharks8Cyclone6LBoxScore
118 - 2019-08-31644Intrepides2Cyclone4WBoxScore
119 - 2019-09-01654Cyclone2Warriors5LBoxScore
121 - 2019-09-03663Cyclone4Distraction11LBoxScore
122 - 2019-09-04671Dynamos5Cyclone2LBoxScore
123 - 2019-09-05681Cyclone3L'Euphorie9LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
124 - 2019-09-06689Cyclone5Senators8LBoxScore
126 - 2019-09-08698Senators5Cyclone6WBoxScore
127 - 2019-09-09707Cyclone4Chiefs5LBoxScore
128 - 2019-09-10716Dynamos6Cyclone7WXBoxScore
130 - 2019-09-12730L'Euphorie6Cyclone4LBoxScore
131 - 2019-09-13737Cyclone5Youngblood8LBoxScore
133 - 2019-09-15744Cyclone5Patriotes7LBoxScore
135 - 2019-09-17756Cyclone2Destroyers7LBoxScore
136 - 2019-09-18762Destroyers5Cyclone1LBoxScore
138 - 2019-09-20770Cyclone5Sheriefs4WBoxScore
139 - 2019-09-21779Sharks5Cyclone6WBoxScore
140 - 2019-09-22787Cyclone5Viking7LBoxScore
142 - 2019-09-24800L'Euphorie3Cyclone6WBoxScore
145 - 2019-09-27818Prospects-Cyclone-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,941,774$ 2,032,500$ 1,631,250$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
13,921$ 2,066,361$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 4 20,086$ 80,344$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201881245303010361509-14840142203010188238-5041103100000173271-98563616761037105116214452272623811823212673975690124826110741.00%29815248.99%14479118040.59%468120938.71%731181840.21%160593318867781378622
Total Regular Season81245303010361509-14840142203010188238-5041103100000173271-98563616761037105116214452272623811823212673975690124826110741.00%29815248.99%14479118040.59%468120938.71%731181840.21%160593318867781378622
Playoff
2017945000005157-6523000002627-1422000002530-585194145009231813061019011323098669133311238.71%271737.04%26012846.88%7013551.85%10221647.22%1991181888315576
Total Playoff945000005157-6523000002627-1422000002530-585194145009231813061019011323098669133311238.71%271737.04%26012846.88%7013551.85%10221647.22%1991181888315576