Cyclone

GP: 35 | W: 16 | L: 19 | OTL: 0 | P: 32
GF: 179 | GA: 214 | PP%: 46.60% | PK%: 46.40%
GM : Pascal Poirier | Morale : 49 | Team Overall : 70
Next Games #359 vs Senators
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Tobias RiederX100.00826398937980837257707478567376059740
2Chris Wagner (R)X100.00956790838679836868676982527173059720
3Johan Larsson (R)XX100.00866887798480856878696678507275059710
4Anton Slepyshev (R)X100.00827296808877527050687274546970059690
5Tyler Motte (R)XX100.00916597848177476850647180536869057690
6Curtis McKenzie (R)X100.00807167828774356950756273506972059670
7Phil Varone (R)X100.00696294817970356165606270506866059630
8Dmitry KulikovX100.00807292888583686750686679507977059740
9Kevin Connauton (R)X100.00886894848581787150687471567274058730
10Joakim Ryan (R)X100.00706297867782676850696677506871059710
11Neal Pionk (R)X100.00896891828088357550846577506565059710
12Markus Nutivaara (R)X100.00736495857882667450777169537068057710
13Zach BogosianX100.00827677848985356450656271507885059700
14Tim Heed (R)X100.00616594867782357350757069626664059680
Scratches
TEAM AVERAGE100.0081679184838057695570687553717205970
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
TEAM AVERAGE0.000000000000000000
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Travis Green80787891696899CAN483900,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Kevin ConnautonCyclone (STO)D3563339-175322317460713.45%4350614.470332200000110.00%02530001.5400001596
2Markus NutivaaraCyclone (STO)D3563238-200222413767634.38%3150614.461341200000000.00%02630001.5000000557
3Tyler MotteCyclone (STO)LW/RW351615314401521143419911.19%1036510.4500000000003170.00%202219101.7000000758
Team Total or Average1052880108111569684541682336.17%84137813.1316735000014270.00%207379101.5700001171921
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anton SlepyshevCyclone (STO)LW241995-03-23 03:26:19Yes221 Lbs6 ft2NoNoNo1ELCPro & Farm1,525,000$0$0$No
Chris WagnerCyclone (STO)C271992-03-22 09:26:19Yes198 Lbs6 ft0NoNoNo1RFAPro & Farm637,500$0$0$No
Curtis McKenzieCyclone (STO)LW271992-03-22 09:26:19Yes205 Lbs6 ft2NoNoNo1RFAPro & Farm1,300,000$0$0$No
Dmitry KulikovCyclone (STO)D281991-03-23 03:26:19No204 Lbs6 ft1YesNoNo3UFAPro & Farm2,500,000$0$0$No
Joakim RyanCyclone (STO)D251993-06-17 07:31:17Yes185 Lbs5 ft11NoNoNo2ELCPro & Farm650,000$0$0$No
Johan LarssonCyclone (STO)C/LW261993-03-22 15:26:19Yes198 Lbs5 ft11NoNoNo1ELCPro & Farm1,462,500$0$0$No
Kevin ConnautonCyclone (STO)D281991-03-23 03:26:19Yes200 Lbs6 ft2NoNoNo1UFAPro & Farm1,000,000$0$0$No
Markus NutivaaraCyclone (STO)D241995-03-23 03:26:19Yes191 Lbs6 ft1NoNoNo1ELCPro & Farm925,000$0$0$No
Neal PionkCyclone (STO)D231995-07-29 07:51:12Yes186 Lbs6 ft0NoNoNo2ELCPro & Farm1,775,000$0$0$No
Phil VaroneCyclone (STO)C281990-12-04 03:26:19Yes193 Lbs5 ft10NoNoNo2UFAPro & Farm900,000$0$0$No
Tim HeedCyclone (STO)D281991-01-27 08:56:38Yes185 Lbs6 ft0NoNoNo2UFAPro & Farm2,500,000$0$0$No
Tobias RiederCyclone (STO)RW251994-03-22 21:26:19No185 Lbs5 ft11NoNoNo1ELCPro & Farm2,225,000$0$0$No
Tyler MotteCyclone (STO)LW/RW231996-03-22 09:26:19Yes191 Lbs5 ft10NoNoNo2ELCPro & Farm925,000$0$0$No
Zach BogosianCyclone (STO)D281991-03-23 03:26:19No215 Lbs6 ft3NoNoNo3UFAPro & Farm2,000,000$0$0$No
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1426.00197 Lbs6 ft01.641,451,786$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
3Tyler Motte20122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Kevin ConnautonMarkus Nutivaara30122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Kevin ConnautonMarkus Nutivaara40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Kevin ConnautonMarkus Nutivaara40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Kevin ConnautonMarkus Nutivaara40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Kevin ConnautonMarkus Nutivaara40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, Tyler Motte, , Tyler Motte
Extra Defensemen
Normal PowerPlayPenalty Kill
, , Kevin Connauton, Kevin Connauton
Penalty Shots
, , , ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Chiefs32100000151322200000010641010000057-240.6671527420035707318631943138738430165110440.00%8450.00%022652543.05%19151037.45%32179040.63%712429801327586265
2Cobra21100000911-2110000007521010000026-420.50091726003570731583194313873552010316466.67%5180.00%022652543.05%19151037.45%32179040.63%712429801327586265
3Destroyers2200000016791100000065111000000102841.000163147003570731623194313873732014328450.00%7185.71%022652543.05%19151037.45%32179040.63%712429801327586265
4Distraction20200000614-820200000614-80000000000000.0006121800357073163319431387361191829200.00%9633.33%222652543.05%19151037.45%32179040.63%712429801327586265
5Dynamos211000001511400000000000211000001511420.500152843003570731693194313873541110407457.14%5260.00%122652543.05%19151037.45%32179040.63%712429801327586265
6Falcons4400000024131122000000147722000000106481.00024436700357073112731943138738228126212866.67%6433.33%022652543.05%19151037.45%32179040.63%712429801327586265
7L'Euphorie11000000752000000000001100000075221.00071320003570731383194313873351412153133.33%6350.00%022652543.05%19151037.45%32179040.63%712429801327586265
8Monkeys 505000001046-3620200000518-1330300000528-2300.000101929003570731177319431387323091767719526.32%181233.33%022652543.05%19151037.45%32179040.63%712429801327586265
9Monsters404000002336-13202000001322-9202000001014-400.00023446700357073112731943138731605360409555.56%251540.00%122652543.05%19151037.45%32179040.63%712429801327586265
10Sharks20200000817-90000000000020200000817-900.00081523003570731693194313873782721293133.33%8712.50%022652543.05%19151037.45%32179040.63%712429801327586265
11Sheriefs2200000017107110000009451100000086241.000173451003570731893194313873462012447685.71%6350.00%122652543.05%19151037.45%32179040.63%712429801327586265
Total35151901000179214-3517880100091102-11187110000088112-24320.4571793365150035707311140319431387311373873055291034846.60%1256746.40%522652543.05%19151037.45%32179040.63%712429801327586265
13Viking1010000068-21010000068-20000000000000.0006111700357073139319431387338141265360.00%6350.00%022652543.05%19151037.45%32179040.63%712429801327586265
14Warriors1010000037-4000000000001010000037-400.0003690035707312231943138732168164125.00%4325.00%022652543.05%19151037.45%32179040.63%712429801327586265
15Wildcats421010002016431101000151321100000053260.75020365600357073111431943138731203424578225.00%12375.00%022652543.05%19151037.45%32179040.63%712429801327586265
_Since Last GM Reset35151901000179214-3517880100091102-11187110000088112-24320.4571793365150035707311140319431387311373873055291034846.60%1256746.40%522652543.05%19151037.45%32179040.63%712429801327586265
_Vs Conference2191200000106133-27954000004858-101248000005875-17180.4291061983040035707316703194313873704239196318693144.93%734143.84%222652543.05%19151037.45%32179040.63%712429801327586265
_Vs Division1367000005279-27642000002931-2725000002348-25120.46252951470035707314123194313873417155112206451840.00%362336.11%022652543.05%19151037.45%32179040.63%712429801327586265

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
3532L31793365151140113738730552900
All Games
GPWLOTWOTL SOWSOLGFGA
3515191000179214
Home Games
GPWLOTWOTL SOWSOLGFGA
1788100091102
Visitor Games
GPWLOTWOTL SOWSOLGFGA
18711000088112
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1034846.60%1256746.40%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
31943138733570731
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
22652543.05%19151037.45%32179040.63%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
712429801327586265


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-05-066Distraction6Cyclone3LBoxScore
2 - 2019-05-0711Cyclone5Chiefs7LBoxScore
4 - 2019-05-0924Wildcats3Cyclone5WBoxScore
6 - 2019-05-1134Cyclone2Cobra6LBoxScore
8 - 2019-05-1345Cyclone3Warriors7LBoxScore
10 - 2019-05-1557Cyclone0Monkeys 7LBoxScore
12 - 2019-05-1763Falcons3Cyclone6WBoxScore
14 - 2019-05-1976Chiefs2Cyclone4WBoxScore
16 - 2019-05-2188Wildcats3Cyclone4WXBoxScore
18 - 2019-05-23100Cyclone4Monkeys 10LBoxScore
21 - 2019-05-26108Viking8Cyclone6LBoxScore
22 - 2019-05-27118Cyclone5Falcons2WBoxScore
24 - 2019-05-29125Cyclone4Dynamos5LBoxScore
26 - 2019-05-31133Cyclone7L'Euphorie5WBoxScore
28 - 2019-06-02143Monkeys 10Cyclone3LBoxScore
30 - 2019-06-04159Monsters11Cyclone6LBoxScore
32 - 2019-06-06165Distraction8Cyclone3LBoxScore
34 - 2019-06-08175Cyclone8Sheriefs6WBoxScore
36 - 2019-06-10182Cyclone5Monsters7LBoxScore
38 - 2019-06-12195Cyclone7Sharks9LBoxScore
40 - 2019-06-14203Wildcats7Cyclone6LBoxScore
42 - 2019-06-16217Chiefs4Cyclone6WBoxScore
45 - 2019-06-19229Cyclone5Monsters7LBoxScore
46 - 2019-06-20234Cyclone11Dynamos6WBoxScore
48 - 2019-06-22244Cobra5Cyclone7WBoxScore
50 - 2019-06-24254Sheriefs4Cyclone9WBoxScore
53 - 2019-06-27268Cyclone5Wildcats3WBoxScore
54 - 2019-06-28271Falcons4Cyclone8WBoxScore
56 - 2019-06-30284Monkeys 8Cyclone2LBoxScore
58 - 2019-07-02295Cyclone5Falcons4WBoxScore
60 - 2019-07-04307Destroyers5Cyclone6WBoxScore
62 - 2019-07-06314Cyclone10Destroyers2WBoxScore
64 - 2019-07-08321Cyclone1Monkeys 11LBoxScore
66 - 2019-07-10337Monsters11Cyclone7LBoxScore
68 - 2019-07-12342Cyclone1Sharks8LBoxScore
71 - 2019-07-15359Senators-Cyclone-
74 - 2019-07-18370Distraction-Cyclone-
76 - 2019-07-20383Sheriefs-Cyclone-
78 - 2019-07-22399Cyclone-Prospects-
79 - 2019-07-23405Falcons-Cyclone-
81 - 2019-07-25418Warriors-Cyclone-
83 - 2019-07-27426Cyclone-Wildcats-
84 - 2019-07-28437Cyclone-Viking-
86 - 2019-07-30446Viking-Cyclone-
87 - 2019-07-31456Cyclone-Intrepides-
89 - 2019-08-02464Patriotes-Cyclone-
91 - 2019-08-04474Cyclone-Patriotes-
92 - 2019-08-05485Intrepides-Cyclone-
94 - 2019-08-07497Youngblood-Cyclone-
96 - 2019-08-09503Cyclone-Intrepides-
98 - 2019-08-11518Cyclone-Cobra-
99 - 2019-08-12523Prospects-Cyclone-
101 - 2019-08-14537Cyclone-Distraction-
103 - 2019-08-16544Warriors-Cyclone-
104 - 2019-08-17555Cyclone-Warriors-
105 - 2019-08-18562Cyclone-Prospects-
107 - 2019-08-20569Cyclone-Chiefs-
108 - 2019-08-21577Patriotes-Cyclone-
110 - 2019-08-23590Cobra-Cyclone-
112 - 2019-08-25602Cyclone-Senators-
113 - 2019-08-26610Youngblood-Cyclone-
116 - 2019-08-29623Cyclone-Youngblood-
117 - 2019-08-30632Sharks-Cyclone-
118 - 2019-08-31644Intrepides-Cyclone-
119 - 2019-09-01654Cyclone-Warriors-
121 - 2019-09-03663Cyclone-Distraction-
122 - 2019-09-04671Dynamos-Cyclone-
123 - 2019-09-05681Cyclone-L'Euphorie-
124 - 2019-09-06689Cyclone-Senators-
126 - 2019-09-08698Senators-Cyclone-
127 - 2019-09-09707Cyclone-Chiefs-
128 - 2019-09-10716Dynamos-Cyclone-
130 - 2019-09-12730L'Euphorie-Cyclone-
Trade Deadline --- Trades can’t be done after this day is simulated!
131 - 2019-09-13737Cyclone-Youngblood-
133 - 2019-09-15744Cyclone-Patriotes-
135 - 2019-09-17756Cyclone-Destroyers-
136 - 2019-09-18762Destroyers-Cyclone-
138 - 2019-09-20770Cyclone-Sheriefs-
139 - 2019-09-21779Sharks-Cyclone-
140 - 2019-09-22787Cyclone-Viking-
142 - 2019-09-24800L'Euphorie-Cyclone-
145 - 2019-09-27818Prospects-Cyclone-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
24 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,509,163$ 2,032,500$ 1,631,250$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
13,921$ 1,077,626$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 76 20,086$ 1,526,536$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201835151901000179214-3517880100091102-11187110000088112-24321793365150035707311140319431387311373873055291034846.60%1256746.40%522652543.05%19151037.45%32179040.63%712429801327586265
Total Regular Season35151901000179214-3517880100091102-11187110000088112-24321793365150035707311140319431387311373873055291034846.60%1256746.40%522652543.05%19151037.45%32179040.63%712429801327586265
Playoff
2017945000005157-6523000002627-1422000002530-585194145009231813061019011323098669133311238.71%271737.04%26012846.88%7013551.85%10221647.22%1991181888315576
Total Playoff945000005157-6523000002627-1422000002530-585194145009231813061019011323098669133311238.71%271737.04%26012846.88%7013551.85%10221647.22%1991181888315576