Monkeys

GP: 79 | W: 46 | L: 29 | OTL: 4 | P: 96
GF: 512 | GA: 484 | PP%: 50.77% | PK%: 52.42%
GM : Fred Joanis | Morale : 58 | Team Overall : 69
Next Games #875 vs Guerriers du Nord
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Filip Zadina (R)X100.006855988777813580507683696266660347102131,775,000$
2Trevor Moore (R)X100.00856296898078497150677478566867063700262775,000$
3Maxime Comtois (R)X100.00916982848879357450727568726668080690222925,000$
4Michael Dal Colle (R)X100.00876495828577616850676871516869068680242700,000$
5Pontus Aberg (R)XX100.00545490887574356650716070507070065640271700,000$
6Kris RussellX100.008360948577826766506960845087880727403422,500,000$
7Henri Jokiharju (R)X100.007963908980838569506967705069710707202121,279,167$
8Matt BenningX100.008967928283795168506964735072730357102611,900,000$
9Mario Ferraro (R)X100.009156898981817468506965695068690567102231,137,500$
10Mirco Mueller (R)X100.008261908583836267506765785070700347102611,400,000$
11Madison Bowey (R)X100.007869868481836673507767675070700447002611,000,000$
12Cale Fleury (R)X100.00936796848680496350606468506766038690222883,333$
13Christian Djoos (R)X100.005359958475853571507069745270690526602611,250,000$
Scratches
TEAM AVERAGE100.0079629286818054705069687253707005570
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Oscar Dansk (R)100.0065576888626469656563696364040650
Scratches
TEAM AVERAGE100.006557688862646965656369636404065
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Rick Bowness81957392796499CAN663750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Maxime ComtoisMonkeys (IDS)LW79961152115084201245047211431920.34%22163520.71273360511632135876654.61%141122581112.582330116128
2Trevor MooreMonkeys (IDS)C73851242094041358710743614328219.50%68157021.512238603514824681488355.33%203793531112.662323211159
3Michael Dal ColleMonkeys (IDS)LW546251113620684833810420118.34%2799018.3414163025961122546070.59%516242062.2811000769
4Pontus AbergMonkeys (IDS)LW/RW54285280327530342477317411.34%3399118.3671724141030001383161.64%736327031.6100010361
5Henri JokiharjuMonkeys (IDS)D4112556762115505513158809.16%71101624.7810152518118000073000.00%03853001.3200003113
6Mario FerraroMonkeys (IDS)D7694655560665423484963.85%91128916.97415955101152020.00%03676000.8500000116
7Filip ZadinaMonkeys (IDS)RW252528532751932113396022.12%1843817.54881614440000533057.87%178318022.4212001422
8Cale FleuryMonkeys (IDS)D2515223703210342696385515.63%1447919.17410149430001112058.25%2063018011.5400110150
9Christian DjoosMonkeys (IDS)D19623296609107029328.57%1333117.46257334000001085.71%7138001.7500000011
10Matt BenningMonkeys (IDS)D4512021-20030219648471.04%3448510.7802204000000050.00%61028000.8700000104
11Kris RussellMonkeys (IDS)D1921315122037195321203.77%2647124.79022158011136020.00%01240000.6400000102
12Mirco MuellerMonkeys (IDS)D2151015-56028196224368.06%2337117.68336533011024000.00%01022000.8100000000
13Madison BoweyMonkeys (IDS)D21279-66015124319174.65%1826012.400000100006000.00%1620000.6900000000
Team Total or Average552348566914117240905974872391794141914.55%4581033118.72101150251184906681419589291456.19%27005264532341.7769657464945
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Oscar DanskMonkeys (IDS)117120.9063.326140034361202000.0000110101
Team Total or Average117120.9063.326140034361202000.0000110101


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Cale FleuryMonkeys (IDS)D221998-11-19 15:04:50Yes205 Lbs6 ft1NoNoNo2Pro & Farm883,333$44,166$0$0$No883,333$
Christian DjoosMonkeys (IDS)D261994-08-06 06:54:54Yes169 Lbs6 ft0NoNoNo1Pro & Farm1,250,000$62,500$0$0$NoLink
Filip ZadinaMonkeys (IDS)RW211999-11-27 15:09:35Yes189 Lbs6 ft0NoNoNo3Pro & Farm1,775,000$88,750$0$0$No1,775,000$1,775,000$
Henri JokiharjuMonkeys (IDS)D211999-06-17 14:47:01Yes195 Lbs6 ft0NoNoNo2Pro & Farm1,279,167$63,958$0$0$No1,279,167$
Kris RussellMonkeys (IDS)D341987-05-02 09:26:19No170 Lbs5 ft10NoNoNo2Pro & Farm2,500,000$125,000$0$0$No2,500,000$Link
Madison BoweyMonkeys (IDS)D261995-04-22 07:12:12Yes198 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$50,000$0$0$NoLink
Mario FerraroMonkeys (IDS)D221998-09-17 15:16:04Yes185 Lbs5 ft11NoNoNo3Pro & Farm1,137,500$56,875$0$0$No1,137,500$1,137,500$
Matt BenningMonkeys (IDS)D261994-05-25 16:19:36No203 Lbs6 ft1NoNoNo1Pro & Farm1,900,000$95,000$0$0$NoLink
Maxime ComtoisMonkeys (IDS)LW221999-01-08 04:18:10Yes215 Lbs6 ft2NoNoNo2Pro & Farm925,000$46,250$0$0$No925,000$
Michael Dal ColleMonkeys (IDS)LW241996-06-20 16:09:19Yes204 Lbs6 ft3NoNoNo2Pro & Farm700,000$35,000$0$0$No700,000$
Mirco MuellerMonkeys (IDS)D261995-03-21 09:26:19Yes210 Lbs6 ft3NoNoNo1Pro & Farm1,400,000$70,000$0$0$NoLink
Oscar DanskMonkeys (IDS)G271994-02-28 04:28:22Yes204 Lbs6 ft3NoNoNo1Pro & Farm675,000$33,750$0$0$No
Pontus AbergMonkeys (IDS)LW/RW271993-09-23 07:19:24Yes196 Lbs5 ft11NoNoNo1Pro & Farm700,000$35,000$0$0$NoLink
Trevor MooreMonkeys (IDS)C261995-03-31 15:23:49Yes185 Lbs5 ft10NoNoNo2Pro & Farm775,000$38,750$0$0$No775,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1425.00195 Lbs6 ft11.711,207,143$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Maxime Comtois40122
2Pontus Aberg30122
320122
4Maxime Comtois10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
3Matt Benning20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Maxime Comtois60122
2Pontus Aberg40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Maxime Comtois40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Maxime Comtois40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Maxime Comtois
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Maxime Comtois
Extra Forwards
Normal PowerPlayPenalty Kill
Pontus Aberg, , Maxime ComtoisPontus Aberg, Maxime Comtois
Extra Defensemen
Normal PowerPlayPenalty Kill
Matt Benning, , Matt Benning,
Penalty Shots
, , Maxime Comtois, , Pontus Aberg
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bolt321000002122-122000000171341010000049-540.667213556001132191748130106411179761712730104110660.00%7357.14%0709141150.25%590123547.77%886187147.35%1809115216966331255634
2Destroyers403000101330-1720100010910-120200000420-1620.250132134001132191748127106411179761716338805510440.00%201145.00%0709141150.25%590123547.77%886187147.35%1809115216966331255634
3Distraction52200010353321010000069-3421000102924560.6003559940011321917481841064111797617194934871151173.33%19763.16%2709141150.25%590123547.77%886187147.35%1809115216966331255634
4Dynamos5320000035314312000002123-222000000148660.600356297001132191748222106411179761717758226913538.46%11554.55%0709141150.25%590123547.77%886187147.35%1809115216966331255634
5Extreme312000001727-101100000097220200000820-1220.33317304700113219174812010641117976171183945415240.00%10820.00%0709141150.25%590123547.77%886187147.35%1809115216966331255634
6Falcons4310000023167220000001165211000001210260.7502337600011321917481391064111797617782424567228.57%12375.00%2709141150.25%590123547.77%886187147.35%1809115216966331255634
7Guerriers du Nord4310000028171122000000158721100000139460.7502849770011321917481511064111797617104291982251144.00%7271.43%0709141150.25%590123547.77%886187147.35%1809115216966331255634
8Intrepides311010001815321001000151141010000034-140.6671831490011321917481391064111797617642425468450.00%10280.00%1709141150.25%590123547.77%886187147.35%1809115216966331255634
9L'Euphorie41101100191901010000047-3310011001512350.625193251001132191748160106411179761712540166414750.00%7528.57%0709141150.25%590123547.77%886187147.35%1809115216966331255634
10Les Restants42100010332582100001017152211000001610660.750335588001132191748170106411179761714550287220945.00%14842.86%1709141150.25%590123547.77%886187147.35%1809115216966331255634
11Monster522001004240242200000343131000010089-150.50042761180011321917482091064111797617210823953201575.00%12466.67%0709141150.25%590123547.77%886187147.35%1809115216966331255634
12Monsters5400010030219220000001376320001001714390.90030528200113219174818910641117976172105326749222.22%13376.92%1709141150.25%590123547.77%886187147.35%1809115216966331255634
13Patriotes321000001817122000000151231010000035-240.66718335100113219174810810641117976171182812377457.14%6183.33%0709141150.25%590123547.77%886187147.35%1809115216966331255634
14Prospects311010002116511000000725201010001414040.66721365700113219174813110641117976177829164913753.85%8362.50%0709141150.25%590123547.77%886187147.35%1809115216966331255634
15Senators413000002738-11211000001818020200000920-1120.250274774001132191748142106411179761718180375214964.29%161037.50%0709141150.25%590123547.77%886187147.35%1809115216966331255634
16Sharks431000003419152200000018513211000001614260.750346094001132191748153106411179761718857254415746.67%5260.00%1709141150.25%590123547.77%886187147.35%1809115216966331255634
17Shokers30300000725-1820200000516-111010000029-700.0007111800113219174812510641117976171535936536233.33%131023.08%0709141150.25%590123547.77%886187147.35%1809115216966331255634
Total7940290343051248428392411011202682284040161802310244256-12960.6085128801392001132191748316510641117976172868961582116726013250.77%22710852.42%11709141150.25%590123547.77%886187147.35%1809115216966331255634
18Vikings430001002619721000100761220000001913670.875264571001132191748189106411179761711630206613861.54%10730.00%1709141150.25%590123547.77%886187147.35%1809115216966331255634
19Warriors321000002021-111000000541211000001517-240.667203555001132191748123106411179761710441245710440.00%12741.67%0709141150.25%590123547.77%886187147.35%1809115216966331255634
20Wildcats3210000020173211000001214-21100000083540.667203252001132191748124106411179761711537124412758.33%6433.33%0709141150.25%590123547.77%886187147.35%1809115216966331255634
21Youngblood3210000025169110000001046211000001512340.667254267001132191748130106411179761710040184114642.86%9366.67%2709141150.25%590123547.77%886187147.35%1809115216966331255634
_Since Last GM Reset7940290343051248428392411011202682284040161802310244256-12960.6085128801392001132191748316510641117976172868961582116726013250.77%22710852.42%11709141150.25%590123547.77%886187147.35%1809115216966331255634
_Vs Conference40231300220253235182013400120131109222010900100122126-4520.6502534366890011321917481560106411179761713964312926201285845.31%1215752.89%5709141150.25%590123547.77%886187147.35%1809115216966331255634
_Vs Division21134001101441172710700011063558116400000816219290.6901442493930011321917488931064111797617752232120338652843.08%603050.00%3709141150.25%590123547.77%886187147.35%1809115216966331255634

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7996W1512880139231652868961582116700
All Games
GPWLOTWOTL SOWSOLGFGA
7940293430512484
Home Games
GPWLOTWOTL SOWSOLGFGA
3924111120268228
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4016182310244256
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
26013250.77%22710852.42%11
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
10641117976171132191748
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
709141150.25%590123547.77%886187147.35%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1809115216966331255634


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2021-02-146Monkeys 7Distraction8LBoxScore
2 - 2021-02-1515Monster7Monkeys 12WBoxScore
4 - 2021-02-1726Monkeys 4L'Euphorie3WXBoxScore
6 - 2021-02-1937Monster10Monkeys 8LBoxScore
8 - 2021-02-2150Wildcats3Monkeys 7WBoxScore
10 - 2021-02-2357Monkeys 5Distraction4WXXBoxScore
12 - 2021-02-2573Sharks4Monkeys 8WBoxScore
14 - 2021-02-2779Monkeys 6Warriors9LBoxScore
16 - 2021-03-0194Monster8Monkeys 6LBoxScore
18 - 2021-03-03107Senators9Monkeys 5LBoxScore
20 - 2021-03-05118Monkeys 9L'Euphorie6WBoxScore
22 - 2021-03-07129Monkeys 3Intrepides4LBoxScore
24 - 2021-03-09135Monkeys 1Destroyers9LBoxScore
26 - 2021-03-11149Intrepides6Monkeys 7WXBoxScore
28 - 2021-03-13159Monkeys 7Prospects6WXBoxScore
30 - 2021-03-15168Monkeys 10Distraction6WBoxScore
32 - 2021-03-17178Destroyers3Monkeys 4WXXBoxScore
34 - 2021-03-19189Patriotes6Monkeys 7WBoxScore
35 - 2021-03-20203Monkeys 7Prospects8LBoxScore
37 - 2021-03-22211Monkeys 7Distraction6WBoxScore
39 - 2021-03-24220Les Restants6Monkeys 7WBoxScore
40 - 2021-03-25232Monkeys 12Les Restants5WBoxScore
42 - 2021-03-27242Extreme7Monkeys 9WBoxScore
44 - 2021-03-29257Monster6Monkeys 8WBoxScore
46 - 2021-03-31267Prospects2Monkeys 7WBoxScore
48 - 2021-04-02277Monkeys 9Warriors8WBoxScore
50 - 2021-04-04285Monkeys 2Shokers9LBoxScore
51 - 2021-04-05298Monkeys 2L'Euphorie3LXBoxScore
52 - 2021-04-06305Vikings1Monkeys 3WBoxScore
54 - 2021-04-08318Monkeys 7Guerriers du Nord1WBoxScore
56 - 2021-04-10329Monkeys 8Wildcats3WBoxScore
58 - 2021-04-12339Monsters2Monkeys 6WBoxScore
60 - 2021-04-14354Intrepides5Monkeys 8WBoxScore
62 - 2021-04-16361Monkeys 6Monsters4WBoxScore
63 - 2021-04-17374Guerriers du Nord2Monkeys 4WBoxScore
65 - 2021-04-19388Vikings5Monkeys 4LXBoxScore
67 - 2021-04-21397Monkeys 4Monsters5LXBoxScore
68 - 2021-04-22403Monkeys 8Dynamos4WBoxScore
70 - 2021-04-24418Distraction9Monkeys 6LBoxScore
71 - 2021-04-25430Monkeys 8Monster9LXBoxScore
73 - 2021-04-27440Wildcats11Monkeys 5LBoxScore
75 - 2021-04-29448Monkeys 6Sharks8LBoxScore
76 - 2021-04-30460Guerriers du Nord6Monkeys 11WBoxScore
78 - 2021-05-02467Monkeys 4Les Restants5LBoxScore
79 - 2021-05-03481Bolt6Monkeys 8WBoxScore
81 - 2021-05-05493Monkeys 3Patriotes5LBoxScore
82 - 2021-05-06505Dynamos6Monkeys 9WBoxScore
84 - 2021-05-08515Monkeys 5Falcons6LBoxScore
86 - 2021-05-10526Monsters5Monkeys 7WBoxScore
88 - 2021-05-12540Senators9Monkeys 13WBoxScore
90 - 2021-05-14552Monkeys 7Vikings5WBoxScore
91 - 2021-05-15562Les Restants9Monkeys 10WXXBoxScore
93 - 2021-05-17571Monkeys 7Monsters5WBoxScore
94 - 2021-05-18579Monkeys 4Bolt9LBoxScore
95 - 2021-05-19590L'Euphorie7Monkeys 4LBoxScore
97 - 2021-05-21605Shokers9Monkeys 2LBoxScore
99 - 2021-05-23617Monkeys 8Youngblood4WBoxScore
100 - 2021-05-24624Monkeys 3Destroyers11LBoxScore
101 - 2021-05-25632Monkeys 4Extreme8LBoxScore
103 - 2021-05-27640Bolt7Monkeys 9WBoxScore
105 - 2021-05-29655Dynamos9Monkeys 5LBoxScore
106 - 2021-05-30665Monkeys 6Dynamos4WBoxScore
107 - 2021-05-31671Monkeys 5Senators9LBoxScore
109 - 2021-06-02683Dynamos8Monkeys 7LBoxScore
110 - 2021-06-03693Monkeys 4Extreme12LBoxScore
112 - 2021-06-05704Monkeys 12Vikings8WBoxScore
113 - 2021-06-06708Youngblood4Monkeys 10WBoxScore
114 - 2021-06-07724Destroyers7Monkeys 5LBoxScore
116 - 2021-06-09740Monkeys 10Sharks6WBoxScore
118 - 2021-06-11748Shokers7Monkeys 3LBoxScore
120 - 2021-06-13764Sharks1Monkeys 10WBoxScore
122 - 2021-06-15777Monkeys 7Falcons4WBoxScore
123 - 2021-06-16785Monkeys 4Senators11LBoxScore
124 - 2021-06-17791Patriotes6Monkeys 8WBoxScore
125 - 2021-06-18804Monkeys 6Guerriers du Nord8LBoxScore
126 - 2021-06-19813Falcons4Monkeys 5WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
129 - 2021-06-22832Falcons2Monkeys 6WBoxScore
130 - 2021-06-23840Monkeys 7Youngblood8LBoxScore
132 - 2021-06-25854Warriors4Monkeys 5WBoxScore
135 - 2021-06-28875Guerriers du Nord-Monkeys -
136 - 2021-06-29877Monkeys -Patriotes-
139 - 2021-07-02901Warriors-Monkeys -



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
2 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,131,821$ 1,690,000$ 1,690,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,419,316$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 7 17,429$ 122,003$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20207940290343051248428392411011202682284040161802310244256-12965128801392001132191748316510641117976172868961582116726013250.77%22710852.42%11709141150.25%590123547.77%886187147.35%1809115216966331255634
Total Regular Season7940290343051248428392411011202682284040161802310244256-12965128801392001132191748316510641117976172868961582116726013250.77%22710852.42%11709141150.25%590123547.77%886187147.35%1809115216966331255634
Playoff
201940400000923-1420200000416-122020000057-2091827004500162625743019345467910220.00%181044.44%0278531.76%298334.94%226931.88%875796355725
2019404000001034-2420200000614-820200000420-160102030001810106353338018063306210220.00%151220.00%0197326.03%207327.40%158916.85%7142104396325
201940400000923-1420200000416-122020000057-2091827004500162625743019345467910220.00%181044.44%0278531.76%298334.94%226931.88%875796355725
2019404000001034-2420200000614-820200000420-160102030001810106353338018063306210220.00%151220.00%0197326.03%207327.40%158916.85%7142104396325
Total Playoff160160000038114-76808000002060-40808000001854-360387611400102620536194180162074621615228240820.00%664433.33%09231629.11%9831231.41%7431623.42%318201401148243102