Monkeys

GP: 6 | W: 2 | L: 4
GF: 33 | GA: 34 | PP%: 50.00% | PK%: 33.33%
GM : Fred Joanis | Morale : 36 | Team Overall : 69
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Filip Zadina (R)X100.006855988777813580507683696266660517102131,775,000$
2Trevor Moore (R)X100.00856296898078497150677478566867081700262775,000$
3Maxime Comtois (R)X100.00916982848879357450727568726668085690222925,000$
4Michael Dal Colle (R)X100.00876495828577616850676871516869082680252700,000$
5Pontus Aberg (R)XX100.00545490887574356650716070507070053640271700,000$
6Henri Jokiharju (R)X100.007963908980838569506967705069710787202221,279,167$
7Matt BenningX100.008967928283795168506964735072730507102711,900,000$
8Mario Ferraro (R)X100.009156898981817468506965695068690737102231,137,500$
9Mirco Mueller (R)X100.008261908583836267506765785070700517102611,400,000$
10Madison Bowey (R)X100.007869868481836673507767675070700617002611,000,000$
11Cale Fleury (R)X100.00936796848680496350606468506766055690222883,333$
12Christian Djoos (R)X100.005359958475853571507069745270690696602611,250,000$
Scratches
TEAM AVERAGE100.0079629286818053705070687154696906669
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Oscar Dansk (R)100.0065576888626469656563696364064650
Scratches
TEAM AVERAGE100.006557688862646965656369636406465
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Rick Bowness81957392796499CAN663750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Maxime ComtoisMonkeys (IDS)LW697161008260204815.00%112220.43437512000001060.00%5105002.6100000501
2Matt BenningMonkeys (IDS)D60444001329990.00%5559.280000000000000.00%004001.4400000123
Team Total or Average12911205009589295710.11%617814.85437512000001060.00%5109002.2400000624
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Cale FleuryMonkeys (IDS)D221998-11-19 15:04:50Yes205 Lbs6 ft1NoNoNo2Pro & Farm883,333$54,081$0$0$No883,333$
Christian DjoosMonkeys (IDS)D261994-08-06 06:54:54Yes169 Lbs6 ft0NoNoNo1Pro & Farm1,250,000$76,530$0$0$NoLink
Filip ZadinaMonkeys (IDS)RW211999-11-27 15:09:35Yes189 Lbs6 ft0NoNoNo3Pro & Farm1,775,000$108,673$0$0$No1,775,000$1,775,000$
Henri JokiharjuMonkeys (IDS)D221999-06-17 14:47:01Yes195 Lbs6 ft0NoNoNo2Pro & Farm1,279,167$78,316$0$0$No1,279,167$
Madison BoweyMonkeys (IDS)D261995-04-22 07:12:12Yes198 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$61,224$0$0$NoLink
Mario FerraroMonkeys (IDS)D221998-09-17 15:16:04Yes185 Lbs5 ft11NoNoNo3Pro & Farm1,137,500$69,642$0$0$No1,137,500$1,137,500$
Matt BenningMonkeys (IDS)D271994-05-25 16:19:36No203 Lbs6 ft1NoNoNo1Pro & Farm1,900,000$116,326$0$0$NoLink
Maxime ComtoisMonkeys (IDS)LW221999-01-08 04:18:10Yes215 Lbs6 ft2NoNoNo2Pro & Farm925,000$56,632$0$0$No925,000$
Michael Dal ColleMonkeys (IDS)LW251996-06-20 16:09:19Yes204 Lbs6 ft3NoNoNo2Pro & Farm700,000$42,857$0$0$No700,000$
Mirco MuellerMonkeys (IDS)D261995-03-21 09:26:19Yes210 Lbs6 ft3NoNoNo1Pro & Farm1,400,000$85,714$0$0$NoLink
Oscar DanskMonkeys (IDS)G271994-02-28 04:28:22Yes204 Lbs6 ft3NoNoNo1Pro & Farm675,000$41,326$0$0$No
Pontus AbergMonkeys (IDS)LW/RW271993-09-23 07:19:24Yes196 Lbs5 ft11NoNoNo1Pro & Farm700,000$42,857$0$0$NoLink
Trevor MooreMonkeys (IDS)C261995-03-31 15:23:49Yes185 Lbs5 ft10NoNoNo2Pro & Farm775,000$47,448$0$0$No775,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1324.54197 Lbs6 ft11.691,107,692$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Maxime ComtoisTrevor MooreFilip Zadina40122
2Michael Dal ColleChristian Djoos30122
320122
4Trevor MooreFilip ZadinaMaxime Comtois10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mirco Mueller40122
2Mario FerraroMatt Benning30122
3Madison BoweyCale Fleury20122
4Christian Djoos10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Maxime ComtoisTrevor MooreFilip Zadina60122
2Michael Dal ColleChristian Djoos40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mirco Mueller60122
2Mario FerraroMatt Benning40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Filip ZadinaTrevor Moore60122
2Maxime ComtoisMichael Dal Colle40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mirco Mueller60122
2Mario FerraroMatt Benning40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Filip Zadina60122Mirco Mueller60122
2Trevor Moore40122Mario FerraroMatt Benning40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Filip ZadinaTrevor Moore60122
2Maxime ComtoisMichael Dal Colle40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mirco Mueller60122
2Mario FerraroMatt Benning40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Maxime ComtoisTrevor MooreFilip ZadinaMirco Mueller
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Maxime ComtoisTrevor MooreFilip ZadinaMirco Mueller
Extra Forwards
Normal PowerPlayPenalty Kill
Michael Dal Colle, Maxime Comtois, Filip ZadinaMichael Dal Colle, Maxime ComtoisFilip Zadina
Extra Defensemen
Normal PowerPlayPenalty Kill
Madison Bowey, Cale Fleury, Christian DjoosMadison BoweyCale Fleury, Christian Djoos
Penalty Shots
Filip Zadina, Trevor Moore, Maxime Comtois, Michael Dal Colle,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total624000003334-13210000022157303000001119-840.3333365980071790199656668015951388718950.00%181233.33%1437755.84%438153.09%6113345.86%13885125519850
1Warriors624000003334-13210000022157303000001119-840.3333365980071790199656668015951388718950.00%181233.33%1437755.84%438153.09%6113345.86%13885125519850
_Since Last GM Reset624000003334-13210000022157303000001119-840.3333365980071790199656668015951388718950.00%181233.33%1437755.84%438153.09%6113345.86%13885125519850
_Vs Conference624000003334-13210000022157303000001119-840.3333365980071790199656668015951388718950.00%181233.33%1437755.84%438153.09%6113345.86%13885125519850
_Vs Division624000003334-13210000022157303000001119-840.3333365980071790199656668015951388718950.00%181233.33%1437755.84%438153.09%6113345.86%13885125519850

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
64L133659819915951388700
All Games
GPWLOTWOTL SOWSOLGFGA
62400003334
Home Games
GPWLOTWOTL SOWSOLGFGA
32100002215
Visitor Games
GPWLOTWOTL SOWSOLGFGA
30300001119
Last 10 Games
WLOTWOTL SOWSOL
230100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
18950.00%181233.33%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
656668071790
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
437755.84%438153.09%6113345.86%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
13885125519850


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2021-02-144Warriors6Monkeys 5LXBoxScore
3 - 2021-02-1612Warriors6Monkeys 8WBoxScore
5 - 2021-02-1820Monkeys 4Warriors7LBoxScore
7 - 2021-02-2028Monkeys 3Warriors6LBoxScore
9 - 2021-02-2236Warriors3Monkeys 9WBoxScore
11 - 2021-02-2444Monkeys 4Warriors6LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
38 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,440,000$ 1,440,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 3 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
201982621306100516243273413350300025512113441298031002611221391245168981414211041962106300410181001970152328765614129427617262.32%2797174.55%13653142545.82%774165246.85%847173748.76%1895114616617081374704
201982224804800338482-14441112301600164248-8441112503200174234-60443386379753148142144418744836697139251579061211412388636.13%30116246.18%22500106646.90%543119445.48%828185044.76%161388818757981443680
20208241300353052850127412511012202802384241161902310248263-15995289101438001162261808325111091134999182983984592121326513550.94%23211152.16%11732144550.66%603128047.11%909193546.98%1874119417636601304656
Total Regular Season2461259101314301382122615612369390582069960792123565208610683619642671382244538275226856453418812926102804268242782625391818364877939350.45%81234457.64%461885393647.89%1920412646.53%2584552246.79%538232295300216741222040
2020624000003334-13210000022157303000001119-843365980071790199656668015951388718950.00%181233.33%1437755.84%438153.09%6113345.86%13885125519850
Total Playoff624000003334-13210000022157303000001119-843365980071790199656668015951388718950.00%181233.33%1437755.84%438153.09%6113345.86%13885125519850