Sharks

GP: 4 | W: 0 | L: 4
GF: 13 | GA: 28 | PP%: 23.08% | PK%: 50.00%
GM : Jonathan Lecompte | Morale : 26 | Team Overall : 70
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Oskar LindblomX100.007962978479833780517486836870730467202411,137,500$
2Josh Leivo (R)X100.006957978779814378697977716770700527202811,500,000$
3Brendan Lemieux (R)X100.009473618590786971507270765369710527102511,070,000$
4Nicolas Aube-Kubel (R)X100.00925989898377417550737777586869053710251700,000$
5Samuel Blais (R)X100.00976289828978477250707472567072042690251850,000$
6Dmytro Timashov (R)X100.00916692808474496850676972556766061680241891,667$
7Mason Appleton (R)X100.00695690877977536850657175536868027670251758,333$
8Travis Dermott (R)X100.00846786858483696950686876517170064720241925,000$
9Haydn Fleury (R)X100.007966968884795372507369715270720637002511,775,000$
10Victor Mete (R)X100.00685391887582626950686870517173060690231870,000$
11Maxime Lajoie (R)X100.00656190917973356150606067506871047640232833,333$
Scratches
TEAM AVERAGE100.0081628986827951715270727456697005270
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
TEAM AVERAGE0.000000000000000000
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Guy Boucher74647983776799CAN493750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Josh LeivoSharks (LUM)LW4167-1002616686.25%18521.31011112000090051.52%3381001.6400000000
2Mason AppletonSharks (LUM)C4347-12093102230.00%37719.25011112000040043.61%13301001.8200000001
3Nicolas Aube-KubelSharks (LUM)RW4325-18073193615.79%08020.15101212000070033.33%683001.2400000000
4Brendan LemieuxSharks (LUM)LW4314-540742781911.11%17117.8920239000240033.33%332001.1200000000
5Dmytro TimashovSharks (LUM)LW4134-50038186145.56%37819.5202209000060034.78%4671001.0200000000
6Haydn FleurySharks (LUM)D4033-3006619760.00%810827.07011214000010000.00%034000.5500000000
7Travis DermottSharks (LUM)D4112-3008411749.09%1110827.22011014000110000.00%007000.3700000000
8Maxime LajoieSharks (LUM)D4022-220329320.00%57518.820000700006000.00%012000.5300000000
9Victor MeteSharks (LUM)D4011-200525350.00%47619.070000700007000.00%044000.2600000000
10Samuel BlaisSharks (LUM)LW1000-100419130.00%11515.830000000001000.00%010000.0000000000
Team Total or Average37122335-24160543914346698.39%3777721.003699990003680042.53%2213525000.9000000001
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Brendan LemieuxSharks (LUM)LW251996-03-15 12:33:40Yes213 Lbs6 ft1NoNoNo1Pro & Farm1,070,000$65,510$0$0$No
Dmytro TimashovSharks (LUM)LW241996-10-01 04:24:26Yes192 Lbs5 ft10NoNoNo1Pro & Farm891,667$54,591$0$0$No
Haydn FleurySharks (LUM)D251996-07-08 17:13:38Yes208 Lbs6 ft3NoNoNo1Pro & Farm1,775,000$108,673$0$0$NoLink
Josh LeivoSharks (LUM)LW281993-05-26 04:40:40Yes192 Lbs6 ft2NoNoNo1Pro & Farm1,500,000$91,836$0$0$No
Mason AppletonSharks (LUM)C251996-01-15 04:45:48Yes193 Lbs6 ft2NoNoNo1Pro & Farm758,333$46,428$0$0$No
Maxime LajoieSharks (LUM)D231997-11-05 15:40:29Yes196 Lbs6 ft1NoNoNo2Pro & Farm833,333$51,020$0$0$No833,333$
Nicolas Aube-KubelSharks (LUM)RW251996-05-10 04:53:06Yes187 Lbs5 ft11NoNoNo1Pro & Farm700,000$42,857$0$0$No
Oskar LindblomSharks (LUM)LW241996-08-15 10:27:49No191 Lbs6 ft1NoNoNo1Pro & Farm1,137,500$69,642$0$0$No
Samuel BlaisSharks (LUM)LW251996-06-17 04:59:22Yes205 Lbs6 ft2NoNoNo1Pro & Farm850,000$52,040$0$0$No
Travis DermottSharks (LUM)D241996-12-22 17:34:13Yes204 Lbs6 ft0NoNoNo1Pro & Farm925,000$56,632$0$0$NoLink
Victor MeteSharks (LUM)D231998-06-07 17:40:19Yes183 Lbs5 ft9NoNoNo1Pro & Farm870,000$53,265$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1124.64197 Lbs6 ft11.091,028,258$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Josh LeivoMason AppletonNicolas Aube-Kubel40122
2Oskar LindblomSamuel BlaisDmytro Timashov30122
3Brendan Lemieux20122
4Samuel BlaisJosh LeivoOskar Lindblom10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Travis DermottHaydn Fleury40122
2Victor MeteMaxime Lajoie30122
320122
4Travis DermottHaydn Fleury10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Josh LeivoMason AppletonNicolas Aube-Kubel60122
2Oskar LindblomSamuel BlaisDmytro Timashov40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Travis DermottHaydn Fleury60122
2Victor MeteMaxime Lajoie40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Josh LeivoOskar Lindblom60122
2Nicolas Aube-KubelBrendan Lemieux40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Travis DermottHaydn Fleury60122
2Victor MeteMaxime Lajoie40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Josh Leivo60122Travis DermottHaydn Fleury60122
2Oskar Lindblom40122Victor MeteMaxime Lajoie40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Josh LeivoOskar Lindblom60122
2Nicolas Aube-KubelBrendan Lemieux40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Travis DermottHaydn Fleury60122
2Victor MeteMaxime Lajoie40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Josh LeivoMason AppletonNicolas Aube-KubelTravis DermottHaydn Fleury
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Josh LeivoMason AppletonNicolas Aube-KubelTravis DermottHaydn Fleury
Extra Forwards
Normal PowerPlayPenalty Kill
Dmytro Timashov, Mason Appleton, Brendan LemieuxDmytro Timashov, Mason AppletonBrendan Lemieux
Extra Defensemen
Normal PowerPlayPenalty Kill
Victor Mete, Maxime Lajoie, Travis DermottVictor MeteMaxime Lajoie, Travis Dermott
Penalty Shots
Josh Leivo, Oskar Lindblom, Nicolas Aube-Kubel, Brendan Lemieux, Samuel Blais
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Extreme404000001328-1520200000813-520200000515-1000.000132437005350183786045014546287413323.08%14750.00%04610145.54%266540.00%268132.10%996677316331
Total404000001328-1520200000813-520200000515-1000.000132437005350183786045014546287413323.08%14750.00%04610145.54%266540.00%268132.10%996677316331
_Since Last GM Reset404000001328-1520200000813-520200000515-1000.000132437005350183786045014546287413323.08%14750.00%04610145.54%266540.00%268132.10%996677316331
_Vs Conference404000001328-1520200000813-520200000515-1000.000132437005350183786045014546287413323.08%14750.00%04610145.54%266540.00%268132.10%996677316331
_Vs Division400000001328-1520000000813-520000000515-1000.000132437005350183786045014546287413323.08%14750.00%04610145.54%266540.00%268132.10%996677316331

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
40L413243718314546287400
All Games
GPWLOTWOTL SOWSOLGFGA
40400001328
Home Games
GPWLOTWOTL SOWSOLGFGA
2020000813
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2020000515
Last 10 Games
WLOTWOTL SOWSOL
040000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
13323.08%14750.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
78604505350
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
4610145.54%266540.00%268132.10%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
996677316331


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2021-02-158Sharks2Extreme9LBoxScore
4 - 2021-02-1716Sharks3Extreme6LBoxScore
6 - 2021-02-1924Extreme4Sharks3LBoxScore
8 - 2021-02-2132Extreme9Sharks5LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
39 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,131,083$ 1,131,083$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 3 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
20198255190440056238617641271002200278199794128902200284187971105629611523021122272194334311011128110862416777501149030018461.33%2229358.11%14710149947.36%593123048.21%954188250.69%1969122016146601341713
201982374003110438454-1641191902010211218-741182101100227236-9744387741212119316517642715823907979122809929651117126013351.15%27414347.81%10710132453.63%690134551.30%920184050.00%1756104618226961350686
202082344102320519552-3341201901010277268941142201310242284-427951989514140011120320153360110811571085142877902636128127615255.07%26815542.16%14762147651.63%567119747.37%980196549.87%1936122916846371315695
Total Regular Season246126100098301519139212712366480522076668581123605204610753707462631519263041491331659559613941830323192317232810226081788394283646956.10%76439148.82%382182429950.76%1850377249.05%2854568750.18%566134965122199440072095
2020404000001328-1520200000813-520200000515-100132437005350183786045014546287413323.08%14750.00%04610145.54%266540.00%268132.10%996677316331
Total Playoff404000001328-1520200000813-520200000515-100132437005350183786045014546287413323.08%14750.00%04610145.54%266540.00%268132.10%996677316331